
Chief's Installer Pro for Windows     
 © 1994, 1995, Dr Abimbola A. Olowofoyeku (the African

Chief) 

Chief's Installer Pro for Windows is an  AWARD WINNING*** shareware
INSTALLER and  UNINSTALLER for Microsoft's Windows 3.1x, and IBM's
Win-OS/2.  In  respect  of  Windows 95 this  is  an "enhanced" version of
Chief's  Installer  Pro  (i.e.,  although  it  is  a  16-bit  program,  it  works
correctly  under  Windows  95,  and  also  Windows  NT  3.5,  and
Windows NT 3.51). 

PC PLUS MAGAZINE GOLD AWARD *** 
Chief's  Installer  Pro  was  winner  of  the  PC  PLUS  Magazine's  GOLD
AWARD (U.K. edition, April 1995). 

Registration costs  £39.99 (U.K. Sterling) or  $59.99 (US dollars). Please
refer to the registration and registration sites sections below, for fuller
information. 
Please read this  documentation and the  DISCLAIMER section carefully
before  using the program. 

INTRODUCTION 
FEATURES 
FOREIGN LANGUAGE SUPPORT 
THE INF FILE 
RESERVED WORDS 
EXISTING FILES 
BATCH FILES 
BATCH COMMANDS 
THE UNINSTALLER 
COMMAND LINE OPERATION 
REGISTRATION 
REGISTRATION SITES 
REGISTRATION FORM 
DISCLAIMER 
CREDITS 
FEEDBACK 
UPDATES 
TECHNICAL SUPPORT 



INTRODUCTION     
Chief's Installer Pro (enhanced for Windows 95) is a program for the
SETUP, INSTALLATION, and "unINSTALLATION" of Windows applications. It
basically is an "off-the-shelf" installation suite. The program will copy files
from floppy disks (or a directory on a hard disk, or a cd-rom disk) to the
destination directory, and do everything else that a Windows Installer is
supposed  to  do.  If  the  files  are  compressed  with  Microsoft's
COMPRESS.EXE they will be decompressed automatically. In this respect,
Chief's Installer Pro uses the routines in  LZEXPAND.DLL. If the files are
not compressed, they will simply be copied to the destination directories. 

SETUP.EXE     
The main executable file for Chief's Installer Pro is INSTALL.EXE - and this
is the only program that needs to be run. Also supplied is SETUP.EXE, an
optional loader for INSTALL.EXE. 

SETUP.EXE performs the following functions; 

[a] display a "initializing install ..." message 

[b]  copy  the  necessary  Install  files  (INSTALL.EXE,  WINSTALL.INF,
WINSTALL.HLP) and WINSTALL.DLL, WINSTALP.DLL, WINSTALL.TXT,
WINSTALL.BMP (if they exist) to the TEMP directory.  CTL3DV2.DLL (if
found) will be copied to the Windows SYSTEM directory - but only if a copy
does not already exist there, and no copy is currently loaded in memory
. 
For these purposes, all these files may be compressed on the installation
disks - but in such cases, they must retain their real names (as above) -
except  INSTALL.EXE,  which  if  compressed  with  the  -r option,  can  be
called  INSTALL.EX_ (the original name will be restored by SETUP.EXE). I
would however suggest that the .DLL files and the .BMP file should not be
compressed. 

SETUP will also optionally copy USER FILES to the TEMP directory in the
same operation. If you want any user files to be copied (because you are
going to do something with them) the file names should be specified in a
$TEMPDIR line in SETUPINF.INF. You can have only one $TEMPDIR line
in  that  file,  and  this  can  only  contain  a  maximum  of  10  file  names
(separated with semi-colons). You should remember to delete such files
with the $CLEANUP command in WINSTALL.INF. 

[c]  load  the  copy  of  INSTALL.EXE from the  TEMP  directory,  with  the
parameters necessary for it to work properly if run in this way 



Is SETUP.EXE useful? "Very much so" is the answer. If there is more than
one installation diskette, then you should use SETUP.EXE. It will save you
the embarrassment of Windows trying to read from  INSTALL.EXE after
disk 2 (or whatever), and the disk in the floppy drive does not contain
INSTALL.EXE. Even if there is only one installation diskette, it may still
help keep the user occupied while INSTALL.EXE is loading. 

I have tried to make this installer as flexible and easy to use as possible.
To use it, you only need to take the following steps; 

1. Create your installation disk set by placing your application's files on
them (up to 64 installation disks are supported). 

2.   You  can  compress  the  files  with  COMPRESS.EXE (it  is  immaterial
whether you do so or not). If files are compressed and an underscore is
used in the compressed file names, these names will only be converted to
the original file names if they were compressed with the -r option. 

3.  Create  an  installation  information  file  in  ASCII  format,  using  a  text
editor.  The file  should be called  WINSTALL.INF,  and should  be in  the
prescribed format. 

4. Run INSTALL.EXE or SETUP.EXE. It is recommended that you always
tell your users to run SETUP.EXE, instead of INSTALL.EXE. 

See also; 
RESERVED WORDS 



FEATURES     
Below is a summary of the features and restrictions in Chief's Installer
Pro. 
1. You can only install into any combination of the following; 
[a]  a  target  directory,  and  any  number  of  subdirectories  under  it's
directory tree 
[b] the Windows directory 
[c] the Windows SYSTEM directory 
[d] the TEMP directory 
[e] any other specified directory 
2. Only a maximum of 64 installation disks are supported. Chief's Installer
Pro will prompt for the disks as they are required. 
3. Chief's Installer Pro will optionally offer to put the destination directory
into the "PATH" statement in AUTOEXEC.BAT 
4. Chief's Installer Pro will optionally create Program Manager group files,
and icons for any supplied file(s) - .EXEs, README files, etc. 
5. Chief's Installer Pro will optionally run any supplied program(s) during
the installation, as part of the installation process. 
6.  Chief's  Installer  Pro  will  optionally  run  any  supplied  program(s)
immediately after the installation is complete 
7. The stipulated format of the WINSTALL.INF file must be followed strictly. 
8. Chief's Installer Pro allows you to supply on-line for the installation. You
have to create a Windows help file called WINSTALL.HLP. This help file can
be accessed by clicking on the "HELP" button. A simple one is supplied.
You can either use that, or create your own. If  no WINSTALL.HLP file is
found in  the path,  then the "HELP" button is  removed from the Install
window. 
9. Chief's Installer Pro will check whether there is sufficient space on the
target drive - based on information which you supply as to how much disk
space your application requires. If you need extra temporary disk space
for the installation, Chief's Installer Pro can check for this also. 
10.  Chief's  Installer  Pro  will  make  entries  in  any  INI  (or  other)  file(s)
specified by you. Unlimited entries can be made. Do NOT use this feature
to insert an entry which may already exist - the old entry will be deleted
and replaced by the new one (e.g., do NOT use it for "DEVICE=" lines in
SYSTEM.INI) 
11. Chief's Installer Pro provides support for non-English languages. 
12. Chief's Installer Pro provides support for PARTIAL INSTALLATIONS of
programs. In this respect, you can have up to 10 installation options. 
13. Chief's Installer Pro provides support for displaying a  banner in the
background, and for specifying the text of the banner, the font to use used
for it, the font size, the color of the text, the color of the background, and
a brush to paint the background. 
14.  Chief's  Installer  Pro  provides  support  for  displaying  a  bitmap file,
stretched to fill the screen. 
15. Chief's Installer Pro will optionally check the disks being inserted by
the user to verify that they are the correct ones. 



16. Chief's Installer Pro provides an UNINSTALLER, which can be used to
uninstall any program that was installed with Chief's Installer Pro. 
17. Chief's Installer Pro will check the target directory for the existence of
any copy of each file being installed, and will optionally prompt the user
for overwrite permission. 
18.  Chief's Installer Pro will  check for  version information in existing
copies of shared binary files, and for date stamps in non-shared files. 
19. Chief's Installer Pro will use the 3D dialog effects in CTL3DV2.DLL if a
copy of that file is found. If CTL3DV2.DLL is not found, the program will try
to use CTL3D.DLL.  If  that is  also not found, then the program will  use
standard Windows dialogs (the absence of these files will NOT cause an
error). This feature is disabled under Windows 95, because the 3D effect is
built into Windows 95. 
20.  Chief's  Installer  Pro provides support  for  restarting Windows if  any
active  shared  file  was  overwritten.  A  dialog  asking  for  confirmation
appears automatically  if any active shared file was overwritten during the
installation. The text on this dialog can be changed by the $RESTARTWIN-
MESSAGE reserved word. 
21. Chief's Installer Pro provides support for displaying a README file to
the user when the installer is executed. The README file should be a plain
ASCII file not bigger than 16kb. The file should be called WINSTALL.TXT.
You can cause the contents of the file to be displayed automatically by
setting $AUTO-CLICK-BUTTON to 4 (otherwise the user will have to click
on the "readme" button to display the text. If the file  WINSTALL.TXT is
not found, then the "readme" button will be removed at run time. 
22. Chief's Installer Pro provides support for making entries into the the
Registration Database, by the reserved word $REG-DATA. 
23. Chief's Installer Pro provides limited support for installing TRUETYPE
fonts. 
24. Chief's Installer Pro provides a batch language and support for running
Chief's Installer Pro batch files. 
25. Chief's Installer Pro provides support for UNZIP - the UNZIP command
is compatible with PKZIP(tm) 2.x ZIP archives. 
26. Chief's Installer Pro provides an Integrated Development Environment
(IDE)  and  a  Project  Manager  for  developing  and  managing  installation
projects. 
27. Chief's Installer Pro's IDE provides an option to convert Visual BASIC
Setup Wizard (.VBZ) files to a Chief's Installer Pro project. 
28.  Chief's  Installer  Pro  provides  a  compiler  for  compiling  your
WINSTALL.INF file and Chief's Installer Pro batch files. 
29. Chief's Installer Pro is fully compatible with 32-bit versions of Windows,
such as Windows 95 and Windows NT, and with Windows emulators such
as OS/2's Win-OS/2. 
30. Chief's Installer Pro provides support for displaying messages (up to
10) during the course of the installation. All the messages must be in an
ascii file called WINSTALL.MSG. Each message section must begin with a
[#<number>] (e.g., [#1]), and cannot be more than 8 lines long (max: 45
characters per line). The messages are displayed in turn, automatically (at
the rate of 100 divided by the number of messages - as per the percent



meter). 
31. Chief's Installer Pro provides (limited) support for installing files from
certain  subdirectories  of  the  source  directory  (e.g.,  on  a  cd-rom or  a
network drive). The scheme is to use each such subdirectory as a pseudo
floppy disk - i.e., the files in the subdirectory will be specified on a $DISK#
line, and then the subdirectory itself will be called $DISK# (e.g., $DISK2 =
for  the files  which  will  be on the $DISK2 lines).  Thus the installer  will
automatically  look  for  directories  names  $DISK#  under  the  source
directory, to install $DISK# files from. This includes $DISK1 as well. 



FOREIGN LANGUAGE SUPPORT     
All the string messages presented to the user by the install erare in string
tables.  There  are  internal  ENGLISH  string  tables  in  INSTALL.EXE,
UNINSTAL.EXE, and SETUP.EXE. These will normally be used to display all
the messages and information. However, Chief's Installer Pro provides 2
methods  of  changing/translating  the  string  tables  for  use  by  the
various .EXEs. One method is by compiling the string tables into DLLs (for
INSTALL.EXE and UNINSTAL.EXE) and the other is  by putting the string
tables in an ASCII file (for SETUP.EXE). 

INSTALL.EXE  will  always  look  for  a  dynamic  link  library  file  called
WINSTALL.DLL from which to load the string tables. If this file is found,
the string tables are read from it by Install at startup time. If you are going
to  use  this  DLL,  it  MUST  be  in  the  same directory  as  INSTALL.EXE.  If
WINSTALL.DLL  is  not  found,  Install  will  use  the  default  (English)  string
tables inside INSTALL.EXE itself. 

By  the  same  token,  UNINSTAL.EXE will  also  look  for  a  DLL  called
UNINST.DLL in order to load the string tables from it. If you create your
own UNINST.DLL, it  must be in the same directory as UNINSTAL.EXE. If
UNINST.DLL is not found, then UnInstall will use the default (English) string
tables inside UNINSTAL.EXE itself. 

Finally,  SETUP.EXE will  also  always  look  for  an  ASCII  file  called
SETUPINF.INF in  order  to  load  the  string  tables  from it.  Each  of  the
strings  must  be  numbered  (by  a  hash,  followed  immediately  by  its
numeric ID), and they must all be together in a section called  [SETUP].
This is because SETUP.EXE will use the  GetPrivateProfileString API to
retrieve them. A sample of  this file is provided - it  mirrors the English
string  tables  inside  SETUP.EXE.  If  you  are  using  an  English  language
installation, you should delete this file, because you do not need it. 

If you create your own SETUPINF.INF, it must be in the same directory as
SETUP.EXE, it must be uncompressed, and it must be exactly in the same
format as the sample that I have provided. If SETUPINF.INF is not found,
then Setup will  use the default (English) string tables inside SETUP.EXE
itself. 

What all this means is that you can change the language used by the
installer by simply producing your own translations of the English string
tables, and compiling them into the relevant DLLs (or putting them into
SETUPINF.INF in the required form). For these purposes, I have provided
copies of my resource scripts, and a sample SETUPINF.INF file. These serve
as a guide to the string tables and the numeric IDs of the strings. Please
do NOT change the numeric ID of any string. 

If anybody produces a non-English translation of the script files, please



send  me  a  copy,  so  that  I  can  package  non-English  versions  of  with
subsequent  releases of  the installer.  If  I  package your  translation,  you
name will make it into the "Credits" section for each version that contains
your translation.

Please note this;     
[a] NO checking is carried out to verify the contents of these string tables,
or even that the string tables actually exist. Thus, if you edit the string
tables and/or produce your own DLLs or SETUPINF.INF file, you are on your
own. 
[b] I can only vouch for the accuracy of the English version of any string
table - and even then, only the version which was produced by me. If I
package any non-English version of any file, please do not stone me if the
translation is incorrect - but if you do find errors, please DO send me what
you think is a correct translation of the string table. 



THE INF FILE     
The configuration file for each installation is called WINSTALL.INF. This is
an ASCII file that has to be created with a text editor (e.g., the Windows
NOTEPAD applet). Every line in the file should end with a carriage return
plus a line feed - so please avoid using UNIX editors to create your INF
files). 
It  is  essential  that  the  instructions  on  the  format  of  WINSTALL.INF  be
followed carefully, otherwise, the installer will not work correctly. The best
approach is to edit the sample files which I have provided. They contain
sufficient  comments  for  them  to  be  understood.  WINSTALL.INF is  a
standard ASCII file, in the following format; 
1. Any line beginning with a ";", or "[" or "REM" is ignored 
2. Empty lines are ignored 
e.g., these lines will be ignored 
[This line will be ignored] 
; So will this line 
REM  so will the one just above me, and me as well! 
3. Each line must not contain more than 220 characters 
4. There are RESERVED WORDS for every valid entry, and these must be
followed strictly. 

The  Chief's  Installer  Pro  IDE
(AUTOCALC.EXE)     
Considerable assistance can be derived by using the Project Manager in
the  Chief's  Installer  Pro  development  environment  (you  need  to  run
AUTOCALC.EXE for  this)  in  creating  INF  files.  See  the  help  file
AUTOCALC.HLP for full documentation on the Project Manager. 
The IDE is an attempt to provide a facility for managing your installation
projects.  It  does  a  good  job  of  producing  template  INF  files  for  each
project, but like most other features of Chief's Installer Pro, it is entirely
optional. If you do not like it, simply delete it - I will not take it personally! 

See also; 
RESERVED WORDS 



RESERVED WORDS     
Everything is done in Install through the use of RESERVED WORDS. Each
reserved  word  begins  with  a  dollar  sign  ($)  and  determines  a  certain
aspect of Install's behaviour. Below is a list of the reserved words and the
methods of using them. 

Below is an alphabeticl list of RESERVED WORDS;     
$ABORT-MESSAGE 
$ABORT-UNINSTAL-QUESTION 
$AUTOEXEC.BAT 
$AUTO-CLICK-BUTTON 
$AUTO-REPLACE 
$BANNER-FONT 
$BANNER-FONT-SIZE 
$BANNER-MESSAGE 
$BANNER-SHADOW-COLOR 
$BANNER-TEXT-BACKGROUND 
$BANNER-TEXT-COLOR 
$BANNER-WINDOW-BRUSH 
$BATCH-FILE 
$BIG-METER-COLOR 
$BITMAP 
$CANCEL-BUTTON-TITLE 
$CHECK-MY-DLL-VERSIONS 
$CLEANUP 
$CLOSE-GROUP-BOX 
$COPYBUFFER 
$DATA-SPACE 
$DEST 
$DIALOG-ICON 
$DISK 
$DISKDIR 
$EXEC 
$FINAL-MESSAGE 
$FONT 
$FORCE-EXIT-WINDOWS 
$FORCE-OVERWRITE-OLDER-FILES 
$FORCE-RESTART-WINDOWS 
$GROUP 
$ICO 
$ICON 
$INI 
$LAN-SYSDIR 
$MAKE-UNINSTALL-LOG 
$MAX-DUPLICATES 



$NO-ABORT-BUTTON 
$NO-CTL3D.DLL 
$NO-END-DIALOG 
$NO-HELP-BUTTON 
$NO-PATH-DIALOG 
$OK-BUTTON-TITLE 
$OPTIONAL 
$OPTIONHELP 
$PAINTDIALOGS 
$PRE-EXEC 
$README-BUTTON-TEXT 
$README-FONT 
$REG-DATA 
$RESTARTWIN-MESSAGE 
$SETCHECKBOX 
$SHOW-FILE-PERCENT 
$SMALL-METER-COLOR 
$SOURCEDIR 
$SPACE 
$SWAP-SPACE 
$SYSDIR 
$SYSDIR-SPACE 
$TARGET 
$TEMPDIR 
$TEXT-BACKGROUND 
$TITLE 
$UNZIP 
$USER-OPTION 
$VERIFY-INSTALL-DISKS 
$VERSION-COPY-ERROR-MESSAGE 
$VERSION-INFO-TITLE 
$VERSION-INFO-MESSAGE 
$WINDIR 
$WINDIR-SPACE 
$WINDOW 
$WINDOW-BACKGROUND 



$TITLE     
This is used to specify the name or title of your application. This is what
will appear in the title of the installation program's window - You can have
only  ONE  such  line.  If  you  don't  supply  any  text  for  the  $BANNER-
MESSAGE reserved word, this title will be used for the banner, with the
words "Welcome to" prepended to it. 

The Syntax is; 
$TITLE=<program title> 
EXAMPLE: 
$TITLE=Great Program v1.20 

See also; 
$BANNER-MESSAGE 

$TARGET     
This is used to specify the name of the DEFAULT target directory for the
installation. The user will be able to change this at run time. If the target
directory  does  not  exist,  Chief's  Installer  Pro  will  create  it  -  and,  if
necessary, will create directories recursively. You can have only ONE such
line. 

By  default,  ALL  the  files  will  be  installed  into  whatever  is  the  target
directory chosen by the user. You can however specify that certain files
should be installed  into subdirectories  UNDER THE TARGET DIRECTORY
TREE, or into the WINDOWS DIRECTORY, or into the WINDOWS SYSTEM
DIRETORY, or into the TEMP DIRECTORY. 

To use this, you use the $DEST, $WINDIR, $SYSDIR, $TEMPDIR reserved
words. 

This reserved word can take optional extra parameters - details of an INI
file  in  the  Windows  directory from  which  entries  from  a  previous
installation of your program can be obtained. The entry here should point
to the directory into which the user installed any previous version. If such
an  entry  is  found,  it  will  be  used  to  replace  the  default  one  in  your
$TARGET line. If no entry is found, the default will be used. 

If the extra parameters are used, then the $TARGET line MUST contain 4
entries, in the following format; 

$TARGET=Default;INI file name;Section;KeyName 

"Section"  corresponds  to  "ApplicationName"  in  the  Windows  API  speak
(i.e.,  the  title  of  the  relevant  section  in  the  INI  file)  and  "KeyName"
corresponds  to  it's  ordinary  meaning  with  regard  to  the
GetPrivateProfileString API call, which is what is used to retrieve the
entries from the INI file (see also the  $INI reserved word). The INI file



name should not contain any path (just the filename only) - the program
will only look for the file in the Windows directory. 

e.g., 
$TARGET=C:\CHIEPRO;CHIEFPRO.INI;ChiefPro;ChiefDir 
Note  that  you  will  need  to  create  the  requisite  entry  with  the  $INI
reserved word. 
e.g., 
$INI=$WINDIR\CHIEFPRO.INI;ChiefPro;ChiefDir;$DEST 

The Syntax is; 
$TARGET=<default directory>[;INI file name;Section;KeyName] 

EXAMPLES: 
$TARGET=C:\MYPROG 
$TARGET=C:\MYPROG;PROG.INI;ProgPriv;ProgDir 

See also; 
$DEST 
$INI 
$SYSDIR 
$TEMPDIR 
$WINDIR 

$SPACE
Use this to specify the amount of disk space needed for the installation.
The amount should be in BYTES and should only contain whole numbers
(no spaces, no letters, and no decimals). 
This  information is used by Install  to warn the users of  the amount of
space that they need to have free on their disks, and to show the progress
of the installation in the "percentage meter". Install will check to see that
the specified amount of space exists on the target drive before installation
begins.  If  there  is  insufficient  space,  Install  will  abort  with  an  error
message. 

There is no need for the number to correspond exactly with the actual
required number of bytes - a difference of up to 2% of the size of your
application (plus or minus) is allowed, and such differences will be catered
for automatically. In fact, it is always good to add about 1% to the actual
disk space needed - because of the vagaries of disk cluster sizes, it may
be wise to over-estimate the disk space needed (a little bit of trial and
error is in order here). You can have only ONE such line. 

The amount specified here should also take into account any disk space
requirements specified in any $OPTION lines. 

NOTE: The IDE (AUTOCALC.EXE) can be used to calculate the required



space automatically. Please read AUTOCALC.HLPfor fuller details. 

The Syntax is; 
$SPACE=<required disk space> 

EXAMPLE: 
$SPACE=2002003 

See also; 
$USER-OPTION 
$OPTIONAL 
$SWAP-SPACE 
$SYSDIR-SPACE 
$WINDIR-SPACE 

$SYSDIR-SPACE     
This  reserved  word  is  optional.  It  is  only  useful  if  you  are  using  the
$SYSDIR command  to  install  shared  files  into  the  Windows  SYSTEM
directory. Its purpose is to enable the installer to ascertain that there is
sufficient space on the drive which holds the Windows SYSTEM directory
(in cases where the user is installing the program onto another drive). The
line should only contain the total size of the files that will be installed to
the Windows SYSTEM directory. 

This  line  does  not  in  any way affect  the  entry  that  should  be  on  the
$SPACE line, because they serve different (but sometimes overlapping)
purposes. If the user is installing the program onto the same drive as that
on which Windows is installed, this line is ignored at run time. 

NOTE: The bonus program AUTOCALC.EXE can be used to calculate the
required  space  automatically.  Please  read  AUTOCALC.TXT for  fuller
details. 

The Syntax is; 
$SYSDIR-SPACE=<space> 

See also; 
$SPACE 
$SYSDIR 
$WINDIR-SPACE 

$WINDIR-SPACE     
This  reserved  word  is  optional.  It  is  only  useful  if  you  are  using  the
$WINDIR command to install shared files into the Windows directory. Its
purpose is to enable the installer to ascertain that there is sufficient space
on the drive which holds the Windows directory (in cases where the user is
installing the program onto another drive). The line should only contain



the total size of the files that will be installed to the Windows directory. 

This  line  does  not  in  any way affect  the  entry  that  should  be  on  the
$SPACE line, because they serve different (but sometimes overlapping)
purposes. If the user is installing the program onto the same drive as that
on which Windows is installed, this line is ignored at run time. 
NOTE: The bonus program AUTOCALC.EXE can be used to calculate the
required  space  automatically.  Please  read  AUTOCALC.TXT for  fuller
details. 

The Syntax is; 
$WINDIR-SPACE=<space> 

See also; 
$SPACE 
$SYSDIR-SPACE 
$WINDIR 

$SWAP-SPACE     
Use this to specify the amount of any temporary swap disk space needed
for  the  installation.  The  amount  should  be  in  BYTES  and  should  only
contain whole numbers (no spaces, no letters, and no decimals). 

This  information is used by Install  to warn the users of  the amount of
space that they need to have free on their disks - bit it does not show in
the  "percentage  meter".  The  installer  will  check  on  the  drive  which
contains the TEMP directory to ensure that there is sufficient swap space.
This obviously presumes that all your scratch and temporary files will be
created in the TEMP directory. You can have only ONE such line. 

EXAMPLE: 
$SWAP-SPACE=0 

See also; 
$SPACE 
$SYSDIR-SPACE 
$WINDIR-SPACE 

$DISK     
You use this reserved word to specify the disk(s) in the installation set, and
the  file(s)  which  should  be  copied  from  them.  Each  file  name  or  file
specification should be separated from the next one by a semi-colon. 
You can use the wildcard character "*" in this respect. 

The Syntax is; 
$DISK n = <filenames(s)> 



where: 
n = numbers from 1 to 64 
<filename(s)> = the file specifications 
the easiest thing to do would be to just specify "*.*" - to copy all the files -
but you can be more specific. 

NOTES:     
If you specify a file that does not exist on the disk, it will just be ignored. 

Note that each line cannot be longer than 220 characters in total. Since
this might mean that all the files you want to specify for a disk might not
fit on one line, you can either put all the file specifications for each disk on
a single $DISK line, or you can split them up into several $DISK lines for
better readability. For example, for DISK 1 of the installation set, you can
either put all the files on one "$DISK1=" line (if they will fit on one line) or
you  can  have  several  "$DISK1="  lines,  each  line  listing  different  file
specifications to make up your DISK 1). 

In most cases, judicious use of wildcard characters should mean that you
only need one line for each disk in your installation set (e.g., if you use
something like: $DISK1=*.EX_;*.HL_;*.TXT). However, of you wish to be
more specific about the files on each disk, the flexibility is available to
spread each "$DISK" across many lines. 

Chief's Installer Pro will prompt the user for each disk in the installation
set.  However,  unless  you  turn  on  disk  verification  with  the  $VERIFY-
INSTALL-DISKS reserved word, no attempt will  be made to check that
the disk being inserted is the correct one. Please note this point. 

Please ensure that the $DISK lines are numbered consecutively, otherwise
there  may be  problems  -  for  example,  don't  jump from "$DISK1="  to
"$DISK3=" (the problem here is - where is $DISK 2? - if you put "$DISK2="
after "$DISK3=", then there may be problems numbering the disks.) 

Compressed files with underscores in the filename will have the filenames
expanded into the name of the original files ONLY if the original files were
compressed with the -r option 
VERY IMPORTANT NOTE: Please be very careful with the way wildcard
characters are used,  especially if  your program spans more than one
disk. For example, it is very convenient to use *.* for all the disks in your
installation set, and while this will be okay if your program is only going to
be installed from floppy disks, imagine the chaos, if somebody copies all
the files to a directory on the hard disk before installing, or if a CD-ROM
distributor puts your program in a directory on a CD-ROM. You will have
the same files ("*.*") being installed over and over again, for each disk on
the installation set, and your users will not be impressed. 
Thus, unless you are absolutely certain that your program will only ever
be installed from floppy disks, you need to be selective in your use of
wildcard characters - at the least, to make sure that if all your program's



files are installed from a single source directory, none of the files which
belong to one disk can be confused with files belonging to another disk. In
this wise, it may be advisable to place files on each disk according to type
and/or extension (e.g.,  $DISK1=*.EX_;*.HL_ :  $DISK2=*.DL_;*.VB_ - etc.,
etc). 

You can also use the $UNZIP command on a $DISK line, to specify that a
file on that disk should be UNZIPPED instead of just copied or expanded. In
this case, the files will only go to the destination provided in the $UNZIP
command. 

EXAMPLES: 
$DISK 1 = *.* 
$DISK 2 = *.DLL;*.HLP;*.DRV;WS*.*;*.EX_ 
$DISK 2 = EXPAND.*;COMPRESS.EXE;FRED.EXE;CHIEF.EXE 
$DISK 3 = HELP.DOC;*.FFF 
$DISK4=$UNZIP;$SOURCEDIR\BIN.ZIP;$DEST\BIN 

See also; 
$VERIFY-INSTALL-DISKS 
$UNZIP 

$DEST     
[i] Where ever this appears  at the beginning of a line, the following
take place; 

(a) "$DEST" is replaced with the target directory selected by the user. For
example,  entry  of  "$DEST\BIN=PROG.EXE",  if  the  user  installed  to  "C:\
NEWPROG", becomes "C:\NEWPROG\BIN=PROG.EXE". 

In this respect, you can also use $DEST to provide for installing files to
other drives and directories (i.e., not under the directory tree of the target
directory, by puttin two exclamation marks (!!) after the $DEST, and then
adding the "=" sign, and the relevant directory, followed be another "="
sign, and then the file(s) which are to go there. You can use other reserved
words (e.g., $WINDIR) here. 

(b) anything after the "=" sign is taken as the file(s) to be installed into
that directory (instead of into the target directory). There can be up
to 30 file names, each separated by a semi-colon. Some limited use of
wildcards is allowed here - if you want to use wildcards, then it must be an
asterix, followed by a dot, and then the full extension of the files - e.g.,
*.TXT;*.INI;*.DLL;*.EXE.  Great care must be taken not to confuse the
program when using wildcards in this way. Careless use of wildcards might
lead to files going where they were not meant to go. It is better to name
individual files whenever possible. 



The sub directories will  be created when necessary - but note that the
order in which they are specified may be important - if there are deep
levels of nesting, the ones higher up the tree must be specified first. 

Please NOTE that in the case of files compressed with the -r switch, you
should use the real (original) names of the uncompressed files, and NOT
the names of the compressed files. For example, if the file MYPROG.DLL
was compressed to MYPROG.DL_, you should put MYPROG.DLL on this
line. The compressed filenames are only allowed on $DISK lines. 

You can have up to any number of $DEST lines (i.e., no limit). 

[ii]   Where  ever  this  appears  elsewhere  in  a  line,  the  "$DEST"  is
replaced with the target directory selected by the user. This use of the
$DEST reserved word is only useful in the "$ICON", "$INI", and "$EXEC"
lines. 

The Syntax is; 
$DEST=<filename(s)> 

EXAMPLES: 
$DEST\BIN=*.EXE;*.DLL;WINSTALL.INF 
$DEST\HELP=*.HLP;*.TXT;*.WRI 
$DEST\SAMPLES=SAMPLE1.INF;SAMPLE2.INF;SAMPLE3.INF 
$DEST!!=D:\TEMP=*.INI;*.TXT;*.TKT 
$DEST!!=$WINDIR\BAK=*.INI;*.TXT; 

See also; 
$EXEC 
$ICON 
$INI 
$TARGET 
$SYSDIR 
$TEMPDIR 
$WINDIR 

$WINDIR     
[i] Whenever this appears at the beginning of a line, the files on that line
are installed to the Windows directory (instead of the target directory). You
can have an unlimited number of $WINDIR lines. Each line can contain a
maximum  of  30 file  names,  each  separated  by  a  semi-colon.  Some
limited use of wildcards is allowed here - if you want to use wildcards,
then it must be an asterix, followed by a dot, and then the full extension
of the files - e.g.,  *.INI;*.EXE. Great care must be taken not to confuse
the program when using wildcards in this way. Careless use of wildcards
might lead to files going where they were not meant to go. It is better to
name individual files whenever possible. Note that each line cannot be
longer than 220 characters. 



Please NOTE that in the case of files compressed with the -r switch, you
should use the real (original) names of the uncompressed files, and NOT
the names of the compressed files. For example, if the file MYPROG.DLL
was compressed to MYPROG.DL_, you should put MYPROG.DLL on this
line. The compressed filenames are only allowed on $DISK lines. 

[ii] Where ever this appears elsewhere in a line, the "$WINDIR" is replaced
with the Windows directory. This use of the $WINDIR reserved word is only
useful in the "$ICON", "$INI", and "$EXEC" lines. 

EXAMPLES: 
$WINDIR=PROG1.EXE;PROG2.EXE;PROG2.EXE;*.INI 
$WINDIR=RATTER.EXE;RETTO.EXE;DRAT.EXE 
$WINDIR=ROTTO.INI;ROUTER.INI;TROUBLE.INI 

See also; 
$DEST 
$SYSDIR 
$TARGET 
$TEMPDIR 

$SYSDIR     
[i] Whenever this appears at the beginning of a line, the files on that line
are  installed  to  the  Windows  SYSTEM  directory  (instead  of  the  target
directory). You can have an unlimited number of $SYSDIR lines. Each line
can contain a maximum of 30 file names, each separated by a semi-colon.

Some  limited use  of  wildcards  is  allowed  here  -  if  you  want  to  use
wildcards, then it must be an asterix, followed by a dot, and then the full
extension of the files - e.g.,  *.VBX;*.DRV;*.DLL;*.TTF. Great care must
be taken not to confuse the program when using wildcards in this way.
Careless use of wildcards might lead to files going where they were not
meant to go. It is better to name individual files whenever possible. 

When wildcards are used in this way,  any conflict is resolved in the
following  order:  [1]  $SYSDIR,  [2]  $WINDIR,  [3]  $TEMPDIR,  [4]
$DEST. This means for example that, if you use "*.DLL" in a $SYSDIR line,
and  then  you  put  something  like  PROG.DLL  in  a  $DEST  line,  the  file
PROG.DLL  will  still  be  installed  into  the  Windows  SYSTEM  directory,
because the $DEST entry is resolved last. Please note this point. 

Note also that each line cannot be longer than 220 characters. 

Please NOTE that in the case of files compressed with the -r switch, you
should use the real (original) names of the uncompressed files, and NOT
the names of the compressed files. For example, if the file MYPROG.DLL
was compressed to MYPROG.DL_, you should put MYPROG.DLL on this



line. The compressed filenames are only allowed on $DISK lines. 

[ii] Where ever this appears elsewhere in a line, the "$SYSDIR" is replaced
with the Windows SYSTEM directory.  This  use of  the $SYSDIR reserved
word is only useful in the "$ICON", and "$EXEC" lines. 

EXAMPLES: 
$SYSDIR=PROG1.DLL;PROG2.DLL;PROG2.DLL;MYDRV.DRV 
$SYSDIR=RATTER.DLL;RETTO.DLL;DRAT.DRV;*.VBX;*.TTF 
$SYSDIR=ROTTO.DRV;ROUTER.DRV;TROUBLE.DRV 

See also; 
$DEST 
$TARGET 
$TEMPDIR 
$WINDIR 

$TEMPDIR     
[i] Whenever this appears at the beginning of a line, the files on that line
are installed to the TEMP directory (instead of the target directory). There
can  be  up  to  30  file  names,  each  separated  by  a  semi-colon.  Some
limited use of wildcards is allowed here - if you want to use wildcards,
then it must be an asterix, followed by a dot, and then the full extension
of the files - e.g., *.TMP;*.$$$. Great care must be taken not to confuse
the program when using wildcards in this way. Careless use of wildcards
might lead to files going where they were not meant to go. It is better to
name individual files whenever possible. You can have only ONE such line. 

[ii]  Where  ever  this  appears  elsewhere  in  a  line,  the  "$TEMPDIR"  is
replaced with the TEMP directory. This use of the $TEMPDIR reserved word
is only useful in the "$INI", and "$EXEC" lines. 

See also; 
$DEST 
$TARGET 
$SYSDIR 
$WINDIR 

$AUTO-REPLACE     
Use this to specify any files that should be replace automatically if they
already exist (i.e., without first prompting the user for confirmation). 

This reserved word if effective for matching files which exist in the target
directory, and which are NOT newer (by their date stamp) than the files
being installed. If the existing file has got a more recent date stamp than
the  one  being  installed,  then  the  user  WILL  be  prompted  before  it  is
overwritten. 



You can have an unlimited number of $AUTO-REPLACE lines, and up to 30
file names on each line (separated by semi-colons). Some limited use of
wildcards is allowed here - if you want to use wildcards, then it must be an
asterix, followed by a dot, and then the full extension of the files - e.g.,
*.TXT;*.INI;*.DLL;*.EXE.  Great care must be taken not to confuse the
program when using wildcards in this way. Careless use of wildcards might
lead to files going where they were not meant to go. It is better to name
individual files whenever possible. 

Please NOTE that in the case of files compressed with the -r switch, you
should use the real (original) names of the uncompressed files, and NOT
the names of the compressed files. For example, if the file MYPROG.DLL
was compressed to MYPROG.DL_, you should put MYPROG.DLL on this
line. The compressed filenames are only allowed on $DISK lines. 

The Syntax is; 
$AUTO-REPLACE=<filename(s)> 

EXAMPLES: 
$AUTO-REPLACE=PROG1.EXE;PROG1.DLL;PROG4.DLL;MYPROG.INI 
$AUTO-REPLACE=RATTER.RAT;RETTO.RET;DRAT.DRA 
$AUTO-REPLACE=ROTTO.ROT;ROUTER.RUT;TROUBLE.HUT 

See also; 
EXISTING FILES 
$FORCE-OVERWRITE-OLDER-FILES 
$SKIP-IDENTICAL-FILES 

$INI     
This  is  used  to  specify  any  ASCII files  that  configuration  information
should be written into. Normally, these will be INI files of some sort, but
they can be any file, as long as any such file is in ASCII format. 

You have have up to any number of  $INI lines (i.e., no limit) - and each
line MUST be in the format prescribed below; 

Each line must contain at least 4 entries - each separated with a
semi-colon 
[a] the first entry is the NAME of the file to be written to - a full path must
be  supplied  -  otherwise,  the  file  is  presumed  to  be  in  the  WINDOWS
directory. You can use "$DEST" here, to specify files in the directory tree of
the target directory. If the file does not exist, it is created. 
[b]  the  second entry  is  the  title  of  the  section  ("Application  name" in
Windows API speak) that should contain the entry. 
[c] the third entry is the name of the entry you wish to make ("Keyname"
in Windows API speak) 
[d] the fourth entry is the string that you wish to associate with the entry.



If  you wish to specify an empty string as the value for the entry,  just
supply " " as the 4th entry. 
[e] you can have an optional fifth entry NO-REPLACE. Use this to signify
that an existing entry should not be replace. By default, an existing entry
in an INI file will be replaced by the ones specified in the $INI lines. Using
NO-REPLACE as the fifth entry in a $INI line will  ensure that while an
entry will be made if none already exists, old entries will be left intact. 
[f] you can have an optional sixth entry -  a user option number. Use
this to assign the INI entry to a user option. This is done by specifying the
relevant user option (e.g., $USER-OPTION3) as the 6th entry on the $INI
line (or as the 5th entry, if NO-REPLACE is not used for the 5th entry). If
the specified user option is de-selected by the user at runtime, then the
INI entry will not be made. 

The Syntax is; 
$INI=<Filename>;<Section>;<KeyName>;<String>[;NO-REPLACE][;$USER
OPTION#] 

EXAMPLES: 
$INI=$DEST\MYPROG.INI;CONFIG;STARTUP;PROG.EXE  -
FE=XDS.XCL 
$INI=WIN.INI;EXTENSIONS;GFD;$DEST\BIN\GFD2.EXE ^.GFD 
$INI=C:\AUTOEXEC.BAT;MYPROG;SET  PROGDIR;$DEST;$USER-
OPTION1 

See also; 
$DEST 
$SYSDIR 
$WINDIR 

$GROUP     
This is used to specify the DEFAULT name of the Program Manager Group
in which the icons will be created. This can be the name of an existing
group (e.g., "Accessories", "Main", etc.) in which case, the items will just
be added to the ones already in that group. However, you may specify a
completely new group. If this does not exist, it will be created. 

You can have only ONE such line - but you can specify other group names
for different icons in the $ICON reserved word. 

$GROUP  can  also  take  an  extra  (and  optional)  parameter  -  the  word
AUTO,  the  word  DISABLE,  or  the  word  SHOW-COMBO.  If  used,  this
parameter should appear after the group name and should be separated
from the group's name by a semi-colon. 

1. AUTO - means create a group automatically - do not allow the user to
uncheck the "Create Program Manager Group" checkbox. 
2. DISABLE - means do NOT create any group at all - and do not allow the
user to specify that a group should be created. 



If  either  of  these  parameters  is  used,  then  the  checkbox  will  not  be
presented. In none of them is used, then the checkbox will be presented
and the user will have a choice. Both of these options deny the user a
choice in the matter (i.e., either the group will be created automatically or
it will not be created at all, regardless of what the user may want). 
3.  SHOW-COMBO - means show a combo box displaying the names of
the available Program Manager groups. The user can then choose any of
the listed groups to use as the main group. 

The Syntax is; 
$GROUP=<groupname>[;parameter] 

EXAMPLES: 
$GROUP=My Program 
$GROUP=My Program;AUTO 
$GROUP=My Program;DISABLE 
$GROUP=My Program;SHOW-COMBO 

See also; 
$ICO 
$ICON 

$ICON     
This is used to specify the names of the files for which you want Program
Manager icons to be created. There can be a maximum of 128 icons (no
such limit on the alternative $ICO). 

Each $ICON line should contain only ONE entry. This is the name of the
file to create an icon for (this could be a program file plus a parameter or
any other file).  This  should be followed by a semi-colon,  and after the
semi-colon, the title that Program Manager should give to the icon; and
(optionally), preceded by a semi-colon, the name of any other group (i.e.,
if  different  from the one  in  the  $GROUP reserved word)  that  the  icon
should be created in; and (optionally), the name of the .ICO file to use for
the file. 

If  no  group  is  specified  on  this  line,  then  the  one  pointed  to  by  the
$GROUP reserved word will be used. 

If no external .ICO file is specified, then Program Manager will use the first
icon it finds in the specified file, or if the file has no icon, then a default
icon will be used. 

If you specify the name of an external .ICO file, then the full path name of
the icon file must be provided, AND, that path MUST be the same as the
path of the file that a Program Manager icon is being created for. What
this means is that the full path of that file must be the first thing on the
$ICON line (i.e., you cannot specify an executable, and then the file as an



argument to that executable). 

Secondly, if you specify an external .ICO file, then you MUST also specify
the group in which the icon will be created (i.e., there must be 4 entries on
the $ICON line in such cases). In this case, you can simply put $GROUP as
the group name. 

Normally,  existing icons will  not  be duplicated if  the installation is  run
again. To change this behaviour, you can specify ALLOW-DUPLICATES as
the  LAST parameter  to  $ICON,  in  which  case,  an  icon  will  be  created
regardless  of  whether  an  icon  by  the  same title  already  exists  in  the
group. 

The Syntax is; 
$ICON=<filename>;<title>[;<group>;<.ICO  file>][;ALLOW-
DUPLICATES] 

EXAMPLES: 
$ICON=$DEST\MYMAIN.EXE;Cool Prog v1.20 
$ICON=BACKUP.EXE;Backup Applet;Accessories 
$ICON=$DEST\MYPROG.HLP;My help file;$GROUP;$DEST\PROG.ICO 
$ICON=$DEST\README.TXT;Readme file;$GROUP;$DEST\TEXT.ICO 
$ICON=NOTEPAD.EXE  REGISTER.TXT;Registration  documentation;ALLOW-
DUPLICATES 

See also; 
$DEST 
$GROUP 
$ICO 
$SYSDIR 
$WINDIR 

$PRE-EXEC     
This  line  is  optional.  It  specifies  the  name(s)  of  any  program(s)  that
should be run during the installation, as part of the installation process.
These programs will be run immediately after the files have been copied
from the disks. Install  will  try to wait for these programs to terminate,
before  continuing.  Such  attempted  waiting  will  work  for  Windows
programs, but will fail if used to run DOS programs under OS/2. 
There can be only ONE such line, but it may contain up to 5 programs,
each separated with a semi-colon. 

The Syntax is; 
$PRE-EXEC=<program name> [parameters] [;<other program>] 

EXAMPLE: 
$PRE-EXEC=$WINDIR\EXPAND.EXE  $DEST\REE.BI_;$TEMPDIR\GAGOFF.EXE  >
NUL 



See also; 
$DEST 
$EXEC 
$SYSDIR 
$TEMPDIR 
$WINDIR 

$CLEANUP     
This  is  optional.  It  specifies the name(s)  of  any temporary files(s)  that
should be deleted after  the installation.  Such deletions (if  any)  will  be
done immediately after any $PRE-EXEC lines have executed and returned.
If there is no $PRE-EXEC line, then the deletions will be done after the $INI
lines have been processed. If there are no $INI lines, then the deletions
will  be  immediately  after  the  $DISK lines  have been processed.  If  the
specified files do not exist, they are simply ignored. 

You can have an unlimited number of $CLEANUP lines. Each line should
contain only ONE entry. You can use wildcard characters here, but note
that the program will NOT accept "*.*". 

Please use this reserved word with care. I accept no responsibility for any
problems caused by using it. 

The $TEMPDIR can be used here with the Install program files in cases
where you choose to use SETUP.EXE as a loader.  This  way, Install  can
cleanup  the  files  which  have  been  copied  by  SETUP.EXE  to  the  TEMP
directory. 

The Syntax is; 
$CLEANUP=<filespecs> 

EXAMPLES: 
$CLEANUP=$TEMPDIR\TMP*.* 
$CLEANUP=$DEST\TEMPFIL.INI 
$CLEANUP=$TEMPDIR\INSTALL.EXE 
$CLEANUP=$TEMPDIR\WINSTAL*.* 

See also; 
$DEST 
$TEMPDIR 

$EXEC     
This  line  is  optional.  It  specifies  the  name(s)  of  any  program(s)  that
should be run immediately after the installation is completed (with any
optional parameters to be passed to the programs). You can have only
ONE such line, but you can put as many as 5 programs on this line, each
separated by a semi-colon. 



The Syntax is; 
$EXEC=<program name> [parameters] [;<other program>] 

EXAMPLE: 
$EXEC=CONFIG.EXE -DIR=C:\TEMP; MYPROG1.EXE; MYPROG2.EXE
-NEW 

See also; 
$DEST 
$PRE-EXEC 
$SYSDIR 
$TEMPDIR 
$WINDIR 

$WINDOW     
This line is optional. It should specify whether you want Install to start up
maximized or not. If the entry here is  MAXIMIZE then Install will  start
maximized - otherwise it will just start normally. You can have only ONE
such line. 

The Syntax is; 
$WINDOW=MAXIMIZE 

$COPYBUFFER     
This line is optional. It sets the size of the buffer used by Install to copy
the files.  The buffer  size  should  be  a  whole  number,  representing  the
number of BYTES to be used. This number MUST be between 2048 and
32760. If it is set lower than 2048, then Install will replace the supplied
value with 2048 - and if it is set higher than 32760, then Install will use
32760. 

The higher the buffer, the faster the files are copied. However, the buffer
size also dictates; 
[a] the frequency with which the "percent" meter is updated 
[b] the frequency with which Install will "yield" the CPU and allow Windows
to  do  other  things  (each  time  COPYBUFFER  bytes  are  copied,  Install
"yields" for 128 milliseconds. 

Therefore, if the number is set too high, the percent meter will  not be
updated frequently  enough, and the display might look odd. If,  on the
other hand, the setting is very low, then the percent meter will be updated
frequently, but the file copying will become much slower. 

The DEFAULT value is  8190, and this will  be used if  this  setting is left
empty. I suggest a setting of 16384 (i.e., 16kb) as a good setting which
adequately compromises between speed of copying, and the frequency of



the progress bar's being updated. 

The Syntax is; 
$COPYBUFFER=<buffersize> 

EXAMPLE: 
$COPYBUFFER=4095 

$WINDOW-BACKGROUND     
This line is  optional. It can be used to set the background color of the
main window of Chief's Installer Pro. The default is to have a light gray
background for the main dialog, and a white background for other dialogs
(the  light  gray  will  also  be  used  for  other  dialogs  if  you  use  the
$PAINTDIALOGS command). Because the background is a Windows brush
handle, the only valid values for this setting are 0, 1, 2, 3, or 4. 

0 = White Brush 
1 = Light gray Brush 
2 = Gray Brush 
3 = Dark gray Brush 
4 = Black Brush 

If you use this to change the window background, be sure to also set the
$TEXT-BACKGROUND (below) to  an appropriate setting.  For  example,  if
this setting is 2 (dark gray) then the text background should be set to
128,128,128 (so that the window and text backgrounds should match). 

The Syntax is; 
$WINDOW-BACKGROUND=<value> 

EXAMPLE: 
$WINDOW-BACKGROUND=1 

See also; 
$TEXT-BACKGROUND 

$TEXT-BACKGROUND     
This line is  optional. It can be used to set the background color of the
text in the main window of Chief's Installer Pro. The default is to have a
light  gray background.  Unless  there is  a pressing need to use another
color,  the  color  used  here  should  be  the  same  as  that  used  for  the
$WINDOW-BACKGROUND. 

The color used here can either be either; 
[a]  one long  integer  value  (you  can use  hexadecimal  values  in  Pascal
notation) - see below for explanation 
or 



[b] three values represent RGB (red, green, blue) values. 
If using RGB values, they should be separated by commas, or semi-colons
(e.g:  128,128,128 - for a dark gray background) 

If  using a hexadecimal  value (those that begin with $00 and then are
followed by SIX values). The SIX values here represent Blue, Green, Red -
or reversed RGB. In this respect,  FF turns the color to full intensity,  00
turns it off, and any other value varies the intensity. 

Note that the color that results from any value depends on the display
driver  of  the  user  (particularly  the  number  of  colors).  For  a  256 color
setup, you can use the following 

EXAMPLE values; 
1. White : $00FFFFFF 
2. White : 255,255,255 
3. Black : $00000000 
4. Black : 0,0,0 
5. Dark Gray : $00808080 
6. Dark Gray : 128,128,128 
7. Red : $000000FF 
8. Red : $255,0,0 
9. Blue : $00FF0000 
10. Blue : 0,0,255 
11. Light Cyan : $00FFFF00 
12. Green : $0000FF00 
13. Yellow : $0000FFFF 
14. Magenta : $00FF00FF 
15. Light Gray : $006F9FFF 
17. Light Gray : 192,192,192 
16. Gray : $00C0C0C0 

The Syntax is; 
$TEXT-BACKGROUND=<color value> 

EXAMPLES: 
$TEXT-BACKGROUND=192,192,192 
$TEXT-BACKGROUND=128,128,128 
$TEXT-BACKGROUND=$00FFFFFF 

See also; 
$WINDOW-BACKGROUND 
$BANNER-TEXT-COLOR 
$BANNER-TEXT-BACKGROUND 
$BANNER-WINDOW-BRUSH 

$PAINTDIALOGS     
This line is optional. It is for use in those cases when you want the status



dialogs to be painted with the same text and background colors as the
main Install window (the default is that the status "percent" dialogs have a
white background).  This line takes no parameter. 

$SETCHECKBOX     
This line is  optional. It automatically checks the checkbox titled "create
Program Manager item". This line takes no parameter. 

$NO-END-DIALOG     
This line is optional, and is not very useful. All it does is to suppress the
final  dialogs which  inform the user  about  whether  the  installation  was
successful  or  not,  and  that  the  installation  is  completed.  The  default
behaviour  of  Install  is  to  present  these  dialogs  to  the  user.  Use  this
reserved word to disable that feature. 
If this feature is used, the warning dialog that comes up if the size of the
files actually installed is less than 98% of the size stated in the $SPACE
reserved word is also disabled. This line takes no parameter. 

$NO-PATH-DIALOG     
This  line  is  optional.  It  disables  the  dialog  box  which  asks  the  user
whether the target directory should be added to the PATH statement in
AUTOEXEC.BAT. The default behaviour is to present this dialog. Use this
reserved word to disable that feature. This line takes no parameter. 

$SHOW-FILE-PERCENT     
This line is optional. What it does is to show a small percent meter for the
progress of each individual file being installed (i.e., in addition to the large
percent  meter  which  shows  the  progress  of  the  whole  installation
process). This reserved word takes no parameter. 

$MAKE-UNINSTALL-LOG     
This  line  is  optional.  What  it  does  is  to  cause Chief's  Installer  Pro  to
create a log file of all the changes it is making to the system. This file is a
binary file (to prevent tampering with it) and is called UNINSTAL.LOG. It
is created in the target directory, and should be left there. This file will be
used by the UNINSTALLER to uninstall the program, if the user so wishes.

If  the  user  is  installing  over  an  existing  installation  and  a  copy  of
UNINSTAL.LOG already exists,  Chief's Installer Pro will  just add the new
information  to  the  end  of  the  existing  one.  This  may  result  in  some
information being duplicated in the file, but will not lead to any strange
result.  The  uninstaller  is  smart  enough  to  handle  any  duplicated
information. 



This reserved word can take as an optional parameter the name of the
file to use as the LOG file for  UNINSTAL.EXE. The parameter should be
separated  with  a  semi-colon,  and  should  contain  a  filename only  (no
path). If no filename is provided, the default name UNINSTAL.LOG will be
used.  If  a  filename is  used  here,  it  MUST be  supplied  as  a  SECOND
parameter to UNINSTAL.EXE 

This reserved word can also take another optional parameter - the word
OVERWRITE. When this is used, the installer marks the LOG file so that
UNINSTAL.EXE will overwrite every file and directory which it has deleted,
so that they cannot be undeleted. This parameter should be used with
great care. 

The Syntax is; 
$MAKE-UNINSTALL-LOG[;logfilename][;OVERWRITE] 

EXAMPLES: 
$MAKE-UNINSTALL-LOG 
$MAKE-UNINSTALL-LOG;OVERWRITE 
$MAKE-UNINSTALL-LOG;VER2.LOG 
$MAKE-UNINSTALL-LOG;VER2.LOG;OVERWRITE 

See also; 
THE UNINSTALLER 

$USER-OPTION     
The user option lines are  optional.  By default, Chief's Installer Pro will
install  all the  files  which  are  specified  in  the  $DISK lines.  However,
sometimes,  the  user  will  only  want  to  install  the  binaries,  or  the
documentation, or the libraries, or any other partial installation. 

The  $USER-OPTION reserved  word  gives  you  the  means  of  providing
user-selectable installation options, for various parts of your program. So
you  can  split  your  program's  installation  into  program files,  help  files,
libraries,  dictionaries,  bitmaps,  etc.,  etc.,  and the user  will  be given a
dialog with  check boxes  which  allows him to  choose,  or  just  to  install
everything.  This  means  that  your  users  will  now  have  the  facility  for
incremental installation of different parts of your program. 

There can be up to  10 $USER-OPTION lines, each of them specifying a
different optional part of your program. If you specify a user option, you
must also use the $OPTIONAL reserved word (see below) to specify the
files which make up that user option. In such cases, appropriate check
boxes will appear. 

Each $USER-OPTION line must contain the title of the option (this is the
text that will appear beside it's check box), followed by a semi-colon, and
then the amount of disk space (in bytes) which the option will require. This



amount will be added to the amount specified in the  $SPACE reserved
word,  such that  if  you make all  the different  parts  of  your installation
optional, then the $SPACE line must specify 0 (zero) as the required disk
space. 

NOTE: The bonus program AUTOCALC.EXE can be used to calculate the
required  space  automatically.  Please  read  AUTOCALC.TXT for  fuller
details. 
$USER-OPTION lines can also take an extra (and optional) parameter - the
word UNCHECKED. If used, it must be put last, separated from the size of
the option's files by a semi-colon. If it is used, the checkbox for the option
is not checked when the installer starts. The user can check it afterwards. 

The Syntax is; 
$USER-OPTION n = <title>;<disk space needed>[;UNCHECKED] 

where: 
n = any number from 1 to 10 
<title> = the text to show beside the option's check box 
<disk space needed> = the amount of disk space required by the option
(in bytes) 

EXAMPLES: 
$USER-OPTION1=Program files;171000 
$USER-OPTION2=Optional DLL files;10000 
$USER-OPTION3=Optional executables;104000 
$USER-OPTION4=Readme files;14384;UNCHECKED 

See also; 
$OPTIONAL 
$OPTIONHELP 
$SPACE 

$OPTIONAL     
This reserved word is used to specify the files that make up any user-
selectable installation options specified with the $USER-OPTION reserved
word. Each line should specify a list the files that make up the particular
option number, each file name separated from the next one by a semi-
colon. Some limited use of wildcards is allowed here - if you want to use
wildcards, then it must be an asterix, followed by a dot, and then the full
extension of the files - e.g., *.TXT;*.INI;*.DLL;*.EXE. Great care must be
taken  not  to  confuse  the  program  when  using  wildcards  in  this  way.
Careless use of wildcards might lead to files going where they were not
meant to go.  It  is  better to name individual  files whenever possible.  A
maximum of 30 file specifications is allowed on each line - but note that
each line cannot be longer than 220 characters in total. 

You can have an unlimited number of $OPTIONAL lines for  each option



specified by a $USER-OPTION line. This facility is to allow for situations
where all the file names will not fit on one line. The fact that you can have
multiple lines for each option number, and that each line can contain up
to 30 file names, means that you can in theory have a large number of
files making up each option. However, please do not go overboard with
this, because each file name on each $OPTIONAL line has to be checked
against every file being installed, to see whether it should be installed or
not.  Therefore,  if  there are too many files in the $OPTIONAL lines,  the
installation process will be slowed down (this might not be a problem on
machines with fast CPUs). 

The Syntax is; 
$OPTIONAL n = <filenames> 
where: 
n  =  any  number  from 1  to  10  (corresponding  to  the  relevant  $USER-
OPTION) 
<filenames> = the files which make up the option - each separated by a
semi-colon 

EXAMPLES: 
$OPTIONAL1=INSTALL.EXE;WINSTALL.HLP;INSTALL.TXT;WINSTALL
.INF 
$OPTIONAL1=SAMPLE1.INF;SAMPLE2.INF;SAMPLE3.INF;SAMPLE4.I
NF 
$OPTIONAL2=ENGLISH.dll;dansk.dll;deutsch.dll 
$OPTIONAL3=UNINSTAL.EXE;SETUP.EXE; 
$OPTIONAL4=*.WRI;*.TXT;*.DOC;*.PS;READ.ME 

See also; 
$OPTIONHELP 
$USER-OPTION 

$BANNER-FONT     
This reserved word specifies the font to use for the banner text that will
be displayed in the background of Chief's Installer Pro's dialog window (on
the Windows desktop). Most of the Windows TRUETYPE fonts can be used
here. The font will be in bold faced characters, and will be italicised. 

This line is optional. It also depends on the file WINSTALP.DLL. That file
contains all the banner functionality, and it's presence is not needed for
Chief's Installer Pro to function (you just won't get any banner). If the file
is not found by Chief's Installer Pro, this line will have no effect. It is also
ineffective if the  $WINDOW=MAXIMIZE reserved word is used. This is
because  when  Chief's  Installer  Pro's  main  window  is  maximized,  the
banner is not displayed at all (for obvious reasons). 

If the named font does not exist on the system, then Windows will try to
use a substitute font, or at the least, a COURIER font. If this line is empty,



then Chief's Installer Pro will default to using the TrueType  TIMES NEW
ROMAN font. 

The Syntax is; 
$BANNER-FONT=<font name> 

EXAMPLE: 
$BANNER-FONT=ARIAL 

See also; 
$BANNER-FONT-SIZE 
$BANNER-MESSAGE 
$BANNER-TEXT-COLOR 
$BANNER-TEXT-BACKGROUND 
$BANNER-SHADOW-COLOR 
$BANNER-WINDOW-BRUSH 
$WINDOW 

$BANNER-FONT-SIZE     
This reserved word specifies the "point" size of the font used to display
the banner. The size should be a whole number. 

This line is optional. It also depends on the file WINSTALP.DLL. That file
contains all the banner functionality, and it's presence is not needed for
Chief's Installer Pro to function (you just won't get any banner). If the file
is not found by Chief's Installer Pro, this line will have no effect. It is also
ineffective if the  $WINDOW=MAXIMIZE reserved word is used. This is
because  when  Chief's  Installer  Pro's  main  window  is  maximized,  the
banner is not displayed at all (for obvious reasons). 

If this line is empty, Chief's Installer Pro defaults to using 35 point. Note
that you should be careful  to cater for the smallest display resolutions
(practically,  640x480 displays).  Therefore the font size should be small
enough for the banner message to fit in a standard VGA screen). 

The Syntax is; 
$BANNER-FONT-SIZE=<font size> 

EXAMPLE: 
$BANNER-FONT-SIZE=45 

See also; 
$BANNER-FONT 
$BANNER-MESSAGE 
$BANNER-TEXT-COLOR 
$BANNER-TEXT-BACKGROUND 
$BANNER-SHADOW-COLOR 
$BANNER-WINDOW-BRUSH 



$WINDOW 

$BANNER-MESSAGE     
This line specifies the message to be displayed as the banner for your
installation.  This  message  is  displayed  in  the  banner  window,  on  the
Windows desktop. The message should be short enough to fit on one line,
taking into account the font being used, and its size. 

This line is optional. It also depends on the file WINSTALP.DLL. That file
contains all the banner functionality, and it's presence is not needed for
Chief's Installer Pro to function (you just won't get any banner). If the file
is not found by Chief's Installer Pro, this line will have no effect. It is also
ineffective if the  $WINDOW=MAXIMIZE reserved word is used. This is
because  when  Chief's  Installer  Pro's  main  window  is  maximized,  the
banner is not displayed at all (for obvious reasons). 

If this line is empty, Chief's Installer Pro will default using the title of your
program as specified on the $TITLE line, and the words "Welcome to" will
be prepended to that title. 

The Syntax is; 
$BANNER-MESSAGE=<banner message> [;CODE] 

In this syntax, "CODE" is optional. Possible values are CENTERED (centre
the  banner  message);  or  VERTICAL (display  the  text  vertically).  If
VERTICAL is used, you also neet to provide an "x" coordinate for the text 

EXAMPLES: 
$BANNER-MESSAGE=This is a Great Program! 
$BANNER-MESSAGE=This is a Great Program;CENTERED 
$BANNER-MESSAGE=Chief Pro;VERTICAL;5 

See also; 
$BANNER-FONT 
$BANNER-FONT-SIZE 
$BANNER-TEXT-COLOR 
$BANNER-TEXT-BACKGROUND 
$BANNER-SHADOW-COLOR 
$BANNER-WINDOW-BRUSH 
$TITLE 
$WINDOW 

$BANNER-TEXT-COLOR     
This reserved word specifies the color to be used for the banner text. This
color can be either one long integer value (TColorRef in Windows) or three
RGB values. The values that can be used here are the same as those that
can be used in the $TEXT-BACKGROUND reserved word. Please see the



documentation on it for further details. 

This line is optional. It also depends on the file WINSTALP.DLL. That file
contains all the banner functionality, and it's presence is not needed for
Chief's Installer Pro to function (you just won't get any banner). If the file
is not found by Chief's Installer Pro, this line will have no effect. It is also
ineffective if the  $WINDOW=MAXIMIZE reserved word is used. This is
because  when  Chief's  Installer  Pro's  main  window  is  maximized,  the
banner is not displayed at all (for obvious reasons). 

If  this  line  is  empty,  install  defaults  to  using  a  white  text  color
($00FFFFFF). 

The Syntax is; 
$BANNER-TEXT-COLOR=<color value> 

EXAMPLE: 
$BANNER-TEXT-COLOR=$00C0C0C0 

See also; 
$BANNER-FONT 
$BANNER-FONT-SIZE 
$BANNER-MESSAGE 
$BANNER-TEXT-BACKGROUND 
$BANNER-WINDOW-BRUSH 
$BANNER-SHADOW-COLOR 
$TEXT-BACKGROUND 
$WINDOW 

$BANNER-TEXT-BACKGROUND     
This  reserved word  specifies  the  color  to  be  used for  the  banner  text
background. This color can be either one long integer value (TColorRef in
Windows) or three RGB values. The values that can be used here are the
same as those that can be used in the  $TEXT-BACKGROUND reserved
word. Please see the documentation on it for further details. 

This line is optional. It also depends on the file WINSTALP.DLL. That file
contains all the banner functionality, and it's presence is not needed for
Chief's Installer Pro to function (you just won't get any banner). If the file
is not found by Chief's Installer Pro, this line will have no effect. It is also
ineffective if the  $WINDOW=MAXIMIZE reserved word is used. This is
because  when  Chief's  Installer  Pro's  main  window  is  maximized,  the
banner is not displayed at all (for obvious reasons). 

If  this  line  is  empty,  install  defaults  to  using  a  blue  text  background
($00800000). 

The Syntax is; 



$BANNER-TEXT-BACKGROUND=<color value> 

EXAMPLE: 
$BANNER-TEXT-BACKGROUND=$00800000 

See also; 
$BANNER-FONT 
$BANNER-FONT-SIZE 
$BANNER-MESSAGE 
$BANNER-TEXT-COLOR 
$BANNER-SHADOW-COLOR 
$BANNER-WINDOW-BRUSH 
$TEXT-BACKGROUND 
$WINDOW 

$BANNER-SHADOW-COLOR     
This  reserved  word  is  optional.  It  is  used  to  give  the  banner  text  a
"shadow". The color value here is in the same format as $BANNER-TEXT-
COLOR and $BANNER-TEXT-BACKGROUND. The shadow is disabled by
default (by giving the shadow color a default value less than 0).  If  the
value  is  0  or  higher,  then  the  shadow  becomes  enabled,  and  the
$BANNER-TEXT-BACKGROUND line becomes disabled. 

The Syntax is; 
$BANNER-SHADOW-COLOR=<color value> 

EXAMPLE: 
$BANNER-SHADOW-COLOR=255,0,0 

See also; 
$BANNER-FONT 
$BANNER-FONT-SIZE 
$BANNER-TEXT-COLOR 
$BANNER-TEXT-BACKGROUND 
$BANNER-SHADOW-COLOR 
$BANNER-WINDOW-BRUSH 
$TITLE 
$WINDOW 

$BANNER-WINDOW-BRUSH     
This reserved word specifies the color to be used to paint the background
of the banner window. The painting is not done as a straight color. Rather,
it starts as the color you specify (at the top of the screen), and gradually
changes,  until  it  reaches  black (at  the  bottom  of  the  screen).  This
presents a pleasant visual effect. This is even more so if you use the same
or  nearly  the  same  color  as  the  one  used  in  the  $BANNER-TEXT-
BACKGROUND line. 



This color can be either one long integer value (TColorRef in Windows) or
three RGB values. The values that can be used here are the same as those
that can be used in the $TEXT-BACKGROUND reserved word. Please see
the documentation on it for further details. 

This line is optional. It also depends on the file WINSTALP.DLL. That file
contains all the banner functionality, and it's presence is not needed for
Chief's Installer Pro to function (you just won't get any banner). If the file
is not found by Chief's Installer Pro, this line will have no effect. It is also
ineffective if the  $WINDOW=MAXIMIZE reserved word is used. This is
because  when  Chief's  Installer  Pro's  main  window  is  maximized,  the
banner is not displayed at all (for obvious reasons). 

If this line is empty, install defaults to using a blue color ($00800000). 

The Syntax is; 
$BANNER-WINDOW-BRUSH=<color value> 

EXAMPLE: 
$BANNER-WINDOW-BRUSH=100010 

See also; 
$BANNER-FONT 
$BANNER-FONT-SIZE 
$BANNER-MESSAGE 
$BANNER-TEXT-COLOR 
$BANNER-TEXT-BACKGROUND 
$BANNER-SHADOW-COLOR 
$TEXT-BACKGROUND 
$WINDOW 

$BITMAP     
This  reserved  word  specifies  a  Windows  bitmap  file  to  display  in  the
banner  window.  The  bitmap  will  be  stretched  to  fill  the  screen,  and
therefore the painting will  often be slow.  The banner text will  then be
displayed on top of the bitmap. If a bitmap file is specified the painting of
the banner window background, as specified in the $BANNER-WINDOW-
BRUSH line will  not take place, since the bitmap will be occupying the
whole screen. Only standard Windows .BMP files are supported. 

This line is optional. It also depends on the file WINSTALP.DLL. That file
contains all the banner functionality, and it's presence is not needed for
Chief's Installer Pro to function (you just won't get any banner). If the file
is not found by Chief's Installer Pro, this line will have no effect. It is also
ineffective if the $WINDOW=MAXIMIZE reserved word is used. 
$BITMAP can take an extra  optional  parameter  NORMAL.  If  used,  this
should appear AFTER the name of the bitmap file, separated by a semi-



colon (e.g., $BITMAP=winstall.bmp;normal). This parameter disables the
stretching of the bitmap, and the bitmap will be displayed in its normal
size, centered on the screen. In such cases also, the main dialog will be
hidden once the  "Start  Install"  button is  clicked -  so that  more of  the
bitmap will be visible. 

This bitmap line is there only as an added extra. The "bitblitting" is often
very slow, has problems with large bitmap files, and so many not be ideal
in many cases. But it is there anyway. You may simply ignore it. If the line
is empty, then Chief's  Installer Pro will  by default  look for a file called
WINSTALL.BMP to use for the background bitmap. If WINSTALL.BMP is
not found, then the program simply use the banner window brush value to
paint the background of the banner window. 

The Syntax is; 
$BITMAP=<bitmap file name>[;NORMAL] 

EXAMPLES: 
$BITMAP=MYPROG.BMP 
$BITMAP=WINSTALL.BMP;NORMAL 

See also; 
$BANNER-MESSAGE 
$BANNER-TEXT-COLOR 
$BANNER-TEXT-BACKGROUND 
$BANNER-SHADOW-COLOR 
$BANNER-WINDOW-BRUSH 
$WINDOW 

$VERIFY-INSTALL-DISKS     
This line is  optional. By default, when the user is prompted to insert a
particular  numbered disk  (e.g.,  "Please insert  disk  4  in  drive"),  Chief's
Installer  Pro does not  perform any check to verify  that  the disk  being
inserted is actually the correct one. You can however use this reserved
word to force Chief's Installer Pro to perform these checks. 

When this  reserved word  is  used,  Chief's  Installer  Pro  will  check  each
installation disk (from disk 1 onwards) to verify that it is the correct disk.
This  check  is  performed  by  looking  for  a  file  on  the  disk,  which
corresponds to the $DISK# being installed, but with the extension .DSK.
Thus for example, if Chief's Installer Pro asked for disk 4 to be inserted in
the drive, it will check for the existence of a file called  $DISK4.DSK on
any disk that is inserted. If the file exists, then this is taken as the correct
disk, and the installation continues. If the file is not found on the disk,
then the user is prompted to insert the disk again, and this will go on until
either the correct disk is inserted, or the user clicks on "Abort". 

The contents of the .DSK file are normally irrelevant. It can be an empty



file - but the file must exist. However, you can optionally provide for the
contents of the .DSK file to be checked. To do this, you need to supply
'READ-FILES' as a parameter. If this feature is turned on, then the installer
will treat the .DSK file for every disk as a Windows .INI file, and check in
the  [disk-id] section  for  the  keyname  'disk-id'.  The  entry  here  must
match the name of the .DSK file being examined - e.g., a .DSK file called
$DISK1.DSK must have the following entries; 

[disk-id] 
disk-id=$DISK1.DSK 

Note that if the entry does not match, the installer will assume that the
disk is  the wrong one and will  keep prompting for the disk.  Thus,  you
should use this feature very carefully. 

EXAMPLES: 
$VERIFY-INSTALL-DISKS 
$VERIFY-INSTALL-DISKS;READ-FILES 

See also; 
$DISK 

$AUTO-CLICK-BUTTON     
The  main  window  of  Chief's  Installer  Pro  has  got  four  push  buttons,
labelled (in English) "Start Install", "Abort", "Help", and "View Read Me".
You can use this reserved word to send a mouse click to any one of these
buttons. When you send a mouse click in this way, the effect is exactly as
if the user had clicked on that push button with the left mouse button.
This will activate whatever the push button is supposed to do. 

The line takes one parameter - the ID of the button to send the mouse
click  to.  For  this  purpose,  1=Start  Install,  2=Abort ,  3=Help,  and
4=View  Read  Me.  This  line  is  useful  for  example,  for  starting  the
installation without giving the user any opportunity to make any selections
or choices, or for clicking on the "Help" or "Readme" button so that your
help file or your readme file (WINSTALL.TXT) will be loaded automatically
(i.e., to force your users to read your documentation). 

This line is optional. 

The Syntax is; 
$AUTO-CLICK-BUTTON=<button ID> 

EXAMPLE: 
$AUTO-CLICK-BUTTON=1 

See also; 
COMMAND LINE OPERATION 



$NO-CTL3D.DLL     
This line is optional, and is probably not very useful. It is for the purpose
of giving people the option of dispensing with the use of CTL3DV2.DLL. If
this line is found, the Chief's Installer Pro will not use the 3D dialog effects
in CTL3DV2.DLL. The question is "why would anyone want to do this?".
The answer is that some Windows video drivers are buggy and might not
necessarily  want  to  co-exist  peacefully  with  CTL3DV2.DLL  in  all
circumstances. 

Not mentioning any names, but I know of one company which produces
buggy Windows drivers for their display cards which sometimes fall into
the category described above. I personally do not use this reserved word,
and it may indeed be unnecessary to use it. 

However, I think that it is good to have the option. 

This line takes no parameter. 

$RESTARTWIN-MESSAGE     
Chief's Installer Pro provides support for restarting Windows if any active
shared  file  was  overwritten.  A  dialog  asking  for  confirmation  appears
automatically  if  any  active  shared  file  was  overwritten  during  the
installation. The text on this dialog can be changed by this reserved word.
If this reserved word is not used, a default message is used, which tells
the user that at least once active DLL has been replaced, and that the
user should restart Windows immediately. 

The message on this line can be up to 200 characters. Obviously, that is
too  wide  for  a  dialog  box.  Therefore  I  have  decided  to  support  one
formatting control here. You can insert carriage returns at any point in the
message by using the "newline" code (i.e.,  \n). If a literal "\n" is desired,
an exclamation mark should precede the "n" (i.e., "\!n"). Furthermore, the
"\n" is case sensitive - so, for example, "\N" will not be converted. 

This line can be used to DISABLE the dialog that asks if the user wants to
restart  Windows.  To  disable  the  feature,  use  $RESTARTWIN-
MESSAGE=DISABLE. 

Please note that if you disable this feature in this way, it is up to you to
inform your user that Windows must be restarted when an active DLL has
been overwritten. How you will ascertain this fact is beyond me. I have
only included this feature because a user asked for it. If you use it, you are
on your own. 

EXISTING-FILES     



Chief's Installer Pro will check in the target directories for existing copies
of  every  file  being  installed.  If  no  copy  of  the  file  exists,  then  the
installation will proceed. If the file exists, the existing copy and the copy
being installed will both be checked to see which one is newer. 
Chief's Installer Pro uses two methods of deciding whether or not a file is
older than another. 

In  the  case  of  shared  binary  files (i.e.,  the  ones  that  go  into  the
Windows and/or the Windows SYSTEM directory), the version information
in the files will first be compared. If there is no version information in the
files, then their date stamps of the file will be compared. In the case of
other files, only the date stamps will be compared (except in the case of
proprietary  DLLs  if  you  use  the  $CHECK-MY-DLL-VERSIONS reserved
word). 

When Chief's Installer Pro has ascertained which of the two copies of a file
is newer, what happens next depends on the choices you made in your
INF file, and/or the choices made by your user. Normally, Chief's Installer
Pro will simply display a dialog box informing the user that a copy (or a
newer copy) of the file already exists in the target directory, and then
show the user the details of the two copies. 

You can decide in advance that certain files specified by you should be
over-written automatically ($AUTO-REPLACE) or that all  older versions
of  files  should  be  over-written  automatically  ($FORCE-OVERWRITE-
OLDER-FILES).  In  this  case,  a  file  is  regarded  as  "older"  if  it  is  not
newer.  In the case of files which both have version information, if the
version number is the same (e.g., they are both 1.1) then the date stamps
will be used to decide which is "older". If the date stamps are the same,
then  the  one  that  already  exists  in  the  target  directory  is  treated  as
"older" than the one being installed. In the case of files without version
information, if both files have the same date stamp, then the existing copy
is still regarded as "older". 

SHARED FILES;     
For the purposes of the installation, Chief's Installer Pro will regard a file as
a shared file only if the following conditions apply; 
[1]  the  file  is  being  installed  into  the  Windows  or  Windows  SYSTEM
directory, and 
[2] the file's extension is either; [a]  .DLL or [b]  .EXE or [c]  .VBX or [d]
.OCX or [e] .DRV or [f] .CPL 

See also; 
$AUTO-REPLACE 
$CHECK-MY-DLL-VERSIONS 
$FORCE-OVERWRITE-OLDER-FILES 
$SKIP-IDENTICAL-FILES 
$VERSION-INFO-TITLE 
$VERSION-INFO-MESSAGE 



$VERSION-COPY-ERROR-MESSAGE 

$CHECK-MY-DLL-VERSIONS     
This line is optional. By default, when another copy of a .DLL file already
exists in the target directory, Chief's Installer Pro will  check for version
information  in  that  DLL  only  if  the  target  directory  is  the  Windows
directory or the Windows SYSTEM directory. That is, only  SHARED DLLs
will  be normally checked for version information. DLLs which are going
into your application's directory for example will only be checked for their
date stamps. 
If you want ALL DLL files to be checked for their version information (i.e.,
regardless  of  their  destination  directory),  then  you  should  use  this
reserved word. This line takes no parameter. 

See also; 
EXISTING FILES 

$VERSION-INFO-TITLE     
This line is optional. By default, when Chief's Installer Pro is reporting the
version  information  on  an  existing  copy  of  a  shared  file,  the  version
number is  reported under the heading "File  Version".  You can use this
reserved word to change that string to something else. This is really useful
only for those who want to display that string in a language other than
English. If you change this string, please try to make the replacement as
short as possible. 

The Syntax is; 
$VERSION-INFO-TITLE=<title> 

EXAMPLE: 
$VERSION-INFO-TITLE=Product Version Number 

See also; 
EXISTING FILES 
$VERSION-INFO-MESSAGE 

$VERSION-INFO-MESSAGE     
This line is optional. When Chief's Installer Pro has retrieved the version
information on an already existing copy of a shared file, a dialog informs
the user that a copy of the file already exists and then asks for over-write
permission. By default, this dialog will not contain any further explanation
of the situation, and will not make any recommendation as to the course
of action to be taken. 

You  can use  this  reserved word  to  provide  some explanation  and/or  a
recommended course of action. If anything appears on this line, it will be



added to the dialog. 

The message on this line can be up to 200 characters. Obviously, that is
too  wide  for  a  dialog  box.  Therefore  I  have  decided  to  support  one
formatting control here. You can insert carriage returns at any point in the
message by using the "newline" code (i.e.,  \n). If a literal "\n" is desired,
an exclamation mark should precede the "n" (i.e., "\!n"). Furthermore, the
"\n" is case sensitive - so, for example, "\N" will not be converted. 

The Syntax is; 
$VERSION-INFO-MESSAGE=<recommendation/explanation> 

EXAMPLE: 
$VERSION-INFO-MESSAGE=You  should  click  on  "NO"  \n  if  the  target  file  is
NEWER. 

See also; 
EXISTING FILES 
$VERSION-INFO-TITLE 

$FINAL-MESSAGE     
If you want to give your user any final message (after the installation is
complete) then you can put that message on this line. The message will
be displayed in a dialog box at the tail end of the installation - just after
the $EXEC line is executed. 

The message on this line can be up to 200 characters. Obviously, that is
too  wide  for  a  dialog  box.  Therefore  I  have  decided  to  support  one
formatting control here. You can insert carriage returns at any point in the
message by using the "newline" code (i.e.,  \n). If a literal "\n" is desired,
an exclamation mark should precede the "n" (i.e., "\!n"). Furthermore, the
"\n" is case sensitive - so, for example, "\N" will not be converted. 

The Syntax is; 
$FINAL-MESSAGE=<message> 

EXAMPLE: 
$FINAL-MESSAGE=Please shut down all  applications and restart
Windows. 

$VERSION-COPY-ERROR-MESSAGE     
This line is  optional. By default, when Chief's Installer Pro is unable to
successfully install a file, all that the user will get is an error message that
there was an error writing to the file, and then the installation will proceed
with the other files. 

In the case of shared files, the problem may be that the file is currently



in  use  and  therefore  cannot  be  over-written.  With  shared  files,  a
temporary copy will normally exist in the TEMP directory (and will  NOT
have  been  deleted  by  the  installer  if  the  attempt  to  install  it  was
unsuccessful).  Chief's  Installer  Pro  will  therefore  by  default  display  a
message  advising  the  user  to  copy  the  file  manually  after  closing
Windows. 

Note that the situation described above will only be exist, if [a] the file is a
shared file, and, [b] a copy of it already exists in the Windows or Windows
SYSTEM directory, and, [c] an attempt to install over the existing copy was
unsuccessful. 

You may want to change this message described above to something that
suits you, and this reserved word allows you to do that. A carriage return
will automatically be added at the end of this message, followed by the
full pathname of the temporary copy of the file. 

Note that because the last thing that appears in the dialog box is the full
path name of the temporary file in the TEMP directory, if you use this line
to change the error message, you need to express it in such a way that it
leads up to the file name. 

The message on this line can be up to 200 characters. Obviously, that is
too  wide  for  a  dialog  box.  Therefore  I  have  decided  to  support  one
formatting control here. You can insert carriage returns at any point in the
message by using the "newline" code (i.e.,  \n). If a literal "\n" is desired,
an exclamation mark should precede the "n" (i.e., "\!n"). Furthermore, the
"\n" is case sensitive - so, for example, "\N" will not be converted. 

The Syntax is; 
$VERSION-COPY-ERROR-MESSAGE<message> 

EXAMPLE: 
$VERSION-COPY-ERROR-MESSAGE=Please copy it  from the TEMP directory later \n. A temporary
copy exists as: 

See also; 
EXISTING FILES 

$FORCE-OVERWRITE-OLDER-FILES     
This line is  optional. By default, when a copy of the file being installed
already exists in the target directory, Chief's Installer Pro will ask the user
whether the existing copy should be over-written or not. This will be the
case even when the existing file is an older version which really ought to
be replaced. This  could be a bit  of  a nuisance sometimes, and so you
might want older versions of files to be replaced automatically. You use
this reserved word to achieve that. 

Note  that  this  reserved  word  is  different  from  the  $AUTO-REPLACE



reserved word, in that, this one applies to all files, while the former applies
only to selected files. 

This line takes no parameter. 

See also; 
EXISTING FILES 
$AUTO-REPLACE 
$CHECK-MY-DLL-VERSIONS 
$SKIP-IDENTICAL-FILES 

$SKIP-IDENTICAL-FILES     
This reserved word is optional. It causes a file to be skipped if a copy of it
already exists in the target directory, and that copy is exactly the same
version as the copy on the installation disk. In order to decide whether two
files are exactly the same version, their date/time stamps, file sizes, and
version information (if the files are shared DLLs) are compared. If there is
any discrepancy in any of these, the files are treated as not being the
same, and will not be skipped. 

The comparisons work correctly in all my tests - but if you are going to use
this feature, please test it thoroughly with your particular set of files. 

See also; 
$AUTO-REPLACE 
$FORCE-OVERWRITE-OLDER-FILES 

$README-BUTTON-TEXT     
Chief's Installer Pro provides support for displaying a README file to the
user before the installation begins. The readme file should be a plain ASCII
file,  should  not  be  larger  than  8192  bytes,  and  should  be  called
WINSTALL.TXT. A button with the caption "View Read Me" is presented
for  this  purpose.   You  can change  the  caption  (text)  on  the  "readme"
button with this reserved word. The text used here must not be longer
than 20 characters. 

You can cause the contents of the file to be displayed automatically by
setting $AUTO-CLICK-BUTTON to 4 (otherwise the user will have to click
on the "readme" button to display the text). If the file WINSTALL.TXT is not
found, then the "readme" button will be removed at run time. 

The Syntax is; 

$README-BUTTON-TEXT=<button caption> 
EXAMPLE: 
$README-BUTTON-TEXT=&Installation Notes 



See also; 
$README-FONT 

$README-FONT     
This reserved word is optional. It is used to change the font in which the
text in  the "Readme" dialog is  displayed,  from a proportional  font  (MS
Sans Serif, 9 point) to a FIXED or MONO spaced font (Courier 8 point). 

The Syntax is; 
$README-FONT=FIXED 

See also; 
$README-BUTTON-TEXT 

$REG-DATA     
This reserved word is optional. It provides support for making entries into
the Registration Database. You can have an unlimited number of  $REG-
DATA lines, and each line can contain only a single entry. The lines can
contain only the keys/sub-keys that you want to create (e.g., associating a
file  extension  with  your  program,  etc).  In  this  case,  the  installer  will
prepend  HKEY_CLASSES_ROOT\ to each of  your entries,  but you may
wish to provide the full entry, including the root key yourself .

NOTE: ** This is a 16-bit program, so please do NOT use any root key
other  than  HKEY_CLASSES_ROOT  under  Win95  or  Windows  NT).  Full
support for the additional Win95 and Windows NT roots will be provided
when a Win32 version of Chief's Installer Pro is released. 

Entries made in the registration database in this way willl be removed by
the uninstaller if and when the user chooses to uninstall the program. 

The Syntax is; 
$REG-DATA=[ROOTKEY\]<subkey>=<value> 

EXAMPLES: 
$REG-DATA=HKEY_CLASSES_ROOT\ChiefPro = Chief's Installer Pro 
$REG-DATA=.inf = ChiefPro 
$REG-DATA=.chf = ChiefPro 
$REG-DATA=ChiefPro\shell\open\command = $DEST\install.exe %1
$REG-DATA=ChiefPro\shell\print\command = $DEST\install.exe /p
%1 
$REG-DATA=ChiefPro\protocol\StdFileEditing\verb\0 = Edit 
$REG-DATA=ChiefPro\protocol\StdFileEditing\server  =  $DEST\
install.exe 

$DIALOG-ICON     



This reserved word is optional. It can be used to change the icon that is
displayed  on  the  installer's  dialogs.  The  reserved  word  takes  one
parameter - a number which corresponds to that of the required icon. The
icons must be in a DLL called WINSTALC.DLL, and must be given given
numeric names from 3 onwards (e.g., 3, 4, 5, 6, etc.). Icons 1 and 2
(5.25 and 3.5 inch icons) are inside INSTALL.EXE itself. There can be up to
250 icons in  WINSTALC.DLL, but only one can be used. If this reserved
word is not used, the the default will be the 3.5" icon. 

The Syntax is; 
$DIALOG-ICON=<icon number> 

EXAMPLE: 
$DIALOG-ICON=4 

$FONT     
This reserved word is  optional. It is used to install TRUETYPE fonts. The
reserved word takes 2 parameters. The first is the name of the font file
(xxx.TTF) which will be used, and the second is the name or description of
the font. Note that the description of the font must be accurate - exactly
as it appears in the Windows Control Panel. The program will try to create
a  .FOT file in the Windows SYSTEM directory, and make the necessary
entries in the Windows INI files. If the font is already installed, it will simply
be reinstalled again. 

You can have an unlimited number of $FONT lines. Note that you need to
direct the font files to the Windows SYSTEM directory with the $SYSDIR
command. 

The Syntax is; 
$FONT=<fontfile.TTF>;<font name> 

EXAMPLES: 
$FONT=ARIALBD.TTF;Arial Bold (True Type) 
$FONT=CHIEFBD.TTF;Bold Chief (True Type) 

$SOURCEDIR     
This reserved word is  optional. It points to the directory from which the
program was actually installed, but can also be used to change the source
directory from the default (useful for internal corporate customisations). 

EXAMPLES: 
$INI=$DEST\PROG.INI;History;SourceDir;$SOURCEDIR 
$SOURCEDIR=F:\USR\LOCAL\BIN\NEWPROG 

See also; 



$ABORT-MESSAGE     
This  is  the  message that  will  appear  to  the  user  when the  user  does
something  to  terminate  the  installation  (e.g.,  clicking  on  the  desktop
"Abort" button) after the installation has commenced. 

The Syntax is; 
$ABORT-MESSAGE=<message> 

EXAMPLE: 
$ABORT-MESSAGE=Do you really want to stop? 

See also; 
$NO-ABORT-BUTTON 

$ABORT-UNINSTAL-QUESTION     
This  is  the  question  that  the  user  will  be  asked,  if  while  running  the
uninstaller, the user clicks on the 'Close' option in the system menu of the
uninstall dialog. 

The Syntax is; 
$ABORT-UNINSTAL-QUESTION=<question> 

EXAMPLE: 
$ABORT-UNINSTAL-QUESTION=Sure  you  want  to  stop  the
uninstall? 

$AUTOEXEC.BAT     
The purpose of this (obsolecent in view of Windows 95) is to make entries
into  the  user's  AUTOEXEC.BAT  file.  The  installer  willl  search  for  the
AUTOEXEC.BAT file, first, in the root directory of drive C:, and then in the
directories in the "PATH". If it is not found in any of these places, then
nothing will happen. There is NO LIMIT to the number of $AUTOEXEC.BAT
lines that you can have in your WINSTALL.INF file. You can use the $DEST
reserved word here. 

The Syntax is; 
$AUTOEXEC.BAT=<entry> 

EXAMPLES: 
$AUTOEXEC.BAT=SET PATH=%PATH%;$DEST\BIN 
$AUTOEXEC.BAT=SET TROOK=C:\TROOK\TROG 

$BATCH-FILE     
This  allows you to  specify  a  Chief's  Installer  Pro  batch file which  the
installer will  execute during the course of the installation. Only one file



name is allowed on each $BATCH-FILE line. In  WINSTALL.INF, you can
have  an  unlimited  number  of  $BATCH-FILE  lines.  However,  in
SETUPINF.INF, you can only have one $BATCH-FILE line. 

The Syntax is; 
$BATCH-FILE=<filename> 

EXAMPLE: 
$BATCH-FILE=$SOURCEDIR\FIRST.CHF 
$BATCH-FILE=$DEST\SECOND.TXT 

See also; 
BATCH COMMANDS 
BATCH FILES 

$BIG-METER-COLOR     
This changes the colour of the big percent meter. It takes the same syntax
as $TEXT-BACKGROUND 

The Syntax is; 
$BIG-METER-COLOR=<value> 

EXAMPLE: 
$BIG-METER-COLOR=$00808080 

See also; 
$TEXT-BACKGROUND 

$CANCEL-BUTTON-TITLE     
This can be used to change the caption of the "Cancel" buttons on the text
entry dialog boxes. This is obsolescent will often be overridden by the new
string resource #543. 

The Syntax is; 
$CANCEL-BUTTON-TITLE=<caption> 

EXAMPLE: 
$CANCEL-BUTTON-TITLE=&Forget it 

See also; 
$OK-BUTTON-TITLE 

$CLOSE-GROUP-BOX     
Group boxes (with internal numeric IDs of 1 to 9)  exist around different
controls in the main dialog window. This reserved word allows you to close
any  or  all  of  these  group  boxes,  by  supplying  their  numeric  IDs  as



parameters (separated by semi-colons); 

The Syntax is; 
$CLOSE-GROUP-BOX=<id number[s]> 

EXAMPLE: 
$CLOSE-GROUP-BOX=1;5;6 

$DATA-SPACE     
This  is  the space requirement for any non-optional  data that your app
might  need  to  create  at  installation  time.  It  will  not  form part  of  the
calculations for the percent meter - but it will be added internally to the
required  free  space  when  the  installer  is  checking  whether  there  is
sufficient space on the target drive. 

The Syntax is; 
$DATA-SPACE=<value> 

EXAMPLE: 
$DATA-SPACE=2048000 

See also; 
$SPACE 

$DISKDIR#     
A source directory path can (optionally) be specified for the files on each
disk (one path only for each disk). This is specified by using the $DISKDIR
reserved word. If no source directory is specified, it is presumed that the
disk's files are to be installed from the general source directory. 

The Syntax is; 
$DISKDIR#=<dir name>;[CODE] 

In this sceranio, "#" stands for the number of the disk. "CODE" is optional.
When used, it specifies whether (for disk 2 to the end) the installer should
prompt the user to insert a disk. It defaults to NOT prompting (to simplify
installing  from cd-rom or  network  drives).  If  you  want  the  user  to  be
prompted for a particular disk, put  ASK,  or  PROMPT,  or just  1 as the
code. Note that "CODE" is not valid for disk 1. 

NOTES:     
1. If the specified directory is NOT found, the installer will prompt the user
for a disk. 
2. The installer will still automatically look for $DISK# directories under
the specified directory 
3.  This feature is  optional,  and is not needed at all.  It  should be used
sparingly, since it has not been tested in all possible scenarios. It is NOT



advised to use this feature when installing from FLOPPY disks (i.e., it is
added mainly for the convenience of those who wish to install from cd-
rom,  or  hard  disk).  Using  it  in  respect  of  floppy  disks  will  NOT be
supported by me. 

EXAMPLES: 
$DISKDIR1=F:\USER\LOCAL\INSTALL 
$DISKDIR2=Z:\;ASK 

See also; 
$DISK 

$FORCE-EXIT-WINDOWS     
This takes no parameter. If it is used, then Windows will be closed down at
the end of the installation, without giving the user any say in the matter.
Note that this feature uses the EXITWINDOWS() API call. Thus it will fail
if any program refuses to terminate (e.g., if the user has a DOS session
open).  Note also that if you use this command, it is advisable to inform
your user of what will happen, with the $FINAL-MESSAGE command. 

See also; 
$FINAL-MESSAGE 
$FORCE-RESTART-WINDOWS 

$FORCE-RESTART-WINDOWS     
This takes no parameter. If it is used, then Windows will be closed down
and restarted at the end of the installation, without giving the user any
say in the matter. Note that this feature uses the EXITWINDOWSEXEC()
API call. Thus it will fail if any program refuses to terminate (e.g., if the
user has a DOS session open). Note also that if you use this command, it
is advisable to inform your user of what will happen, with the  $FINAL-
MESSAGE command. 

See also; 
$FINAL-MESSAGE 
$FORCE-EXIT-WINDOWS 

$ICO     
This is an alternative to the  $ICON command. This one gives you more
control over the icon creation process, and also has the advantage that
there is no limit to the number of icons you can create with it (cf9$ICON
has a limit of 128 entries), but this way of creating icons is a more low
level approach. Note that icon placement in existing groups is sometimes
misaligned when using the $ICO command. 

The  $ICO  command  take  a  number  of  parameters  (up  to  11,  each



separated with a semi-colon, or a comma) to control the details of the
icons being created. 

The Syntax is; 
$ICO=<parameters> 

Parameters 
1 = the group name (or $GROUP for the default) 
2 = allow duplicate icons? (0 for NO; 1 for YES) 
3 = command line 
4 = icon's title 
5 = file to load the icon from  (optional) 
6 = icon index in the icon file (optional) 
7 = x position of the icon in group (optional) 
8 = y position of the icon in group (optional) 
9 = working directory (optional) 
10= hotkey (optional) 
11= minimize (0 for NO; 1 for YES) (optional; defaults to NO) 

Any parameter  marked as  optional  does not  have to  be supplied.  Just
supply a comma or a semi-colon instead. "Hotkey" consists of a number,
made up of a code for a system key (CTRL, ALT, or SHIFT) plus the ascii
code of the letter to be used with it. 

Hotkey Codes:     
Alt   = 1024 
Ctrl  =  512 
Shift =  256 

So, if for example you want to use Alt+S as the hotkey, then: 1024+83
(i.e., 1107) would be the number. 

EXAMPLES: 
$ICO=$GROUP;0;$DEST\TROOK.HLP;Trook  Help;
$DEST.ICO;0;;;$DEST;1107;1 
$ICO=$GROUP;0;$DEST\TROOKCFG.HLP;Trook CFG Help 
$ICO=Trook  Trog;0;$DEST\TROOKTRG.EXE;The  Great
Trook;;;;;;1108; 

See also; 
$ICON 

$LAN-SYSDIR     
This  was  introduced  by  request.  Normally,  if  the  Windows  SYSTEM
directory  is  not  a  subdirectory  of  the  Windows  directory,  this  is  an
indication of a networked Windows environment, and the shared files that
are to go to the Windows SYSTEM directory will in such cases normally be
installed to the user's Windows directory (in many networks the SYSTEM



directory will be read-only). 

If  you  want  all  these  precautions  (which  after  all  are  only  following
Microsoft documentation) to be circumvented and for the shared files to
still to the Windows SYSTEM directory on the network server, then use this
reserved word. 

Note that if you use this command, you are on entirely your own,
and I  will  answer no questions if  something goes wrong.  If  the
SYSTEM directory on the network server cannot be written to for some
reason, your installation will fail, and that, probably woefully.  You have
been warned!!! 

The Syntax is; 
$LAN-SYSDIR=$SYSDIR 

That is the only way in which this reserved word will work. 

$MAX-DUPLICATES     
This command was introduced by request. It allows the installation of the
same file into more than one destination directory. The command takes
one  parameter  -  the  maximum number  of  times  a  single  file  can  be
duplicated in this way. By default, this value is set at 1. You can increase it
to any number up to 30. 

Note that increasing this number will mean the installer looping through
each  $DEST\xx  directory  the  specified  number  of  times,  for  EACH file
being  installed.  This  is  guaranteed  to  slow  down  the  installation
considerably, if the specified number is too high. Using it can also lead to
multiple copies of files which you do not really want to be duplicated - this
is especially so if you use wilcards at all, in your $DEST\xx lines. 

Thus,  if  you  are  only  going  to  install  a  few  files  into  more  than  one
directory,  it  is  better  to  avoid  this  command altogether,  and  use the
COPY command in a batch file. In fact, it is not recommended to use
this $MAX-DUPLICATES command at all. Nothing can be achieved by it that
cannot be better achieved by using the COPY command in a batch file. 

The Syntax is; 
$MAX-DUPLICATES=<number> 

EXAMPLE: 
$MAX-DUPLICATES=4 

See also; 
$BATCH-FILE 
$DEST 



$NO-ABORT-BUTTON     
This  specifies  that  the  "Abort"  button  (on  the  desktop)  should  not  be
displayed. This command takes no parameter. 

See also; 
$NO-HELP-BUTTON 

$NO-HELP-BUTTON     
This  specifies  that  the  "Help"  button  (on  the  desktop)  should  not  be
displayed.  This  command  takes  no  parameter.  Note  that  if  the  file
WINSTALL.HLP is  not  found,  then "Help"  button will  not  be displayed
anyway. 

See also; 
$NO-ABORT-BUTTON 

$OK-BUTTON-TITLE     
This can be used to change the caption of the "OK" buttons on the text
entry dialog boxes. This is obsolescent will often be overridden by the new
string resource #542. 

The Syntax is; 
$OK-BUTTON-TITLE=<caption> 

EXAMPLE: 
$OK-BUTTON-TITLE=&Go on! 

See also; 
$CANCEL-BUTTON-TITLE 

$OPTIONHELP#     
This is to present a brief explanation of the user-options to the user. Each
user-option will have a small button next to it, if there is an OPTIONHELP
for that option. Clicking on that button will display a message box with
your brief explanation. 

Each  user  option  may  have  up  to  10  $OPTIONHELP#  lines  -  but  an
absolute  maximum  limit  of  1024  bytes  applies  to  each  user  option.
Realistically, this maximum should be 512 bytes, because of limits in the
MessageBox() API when using CTL3D. 

The Syntax is; 
$OPTIONHELP#=<help text> 

EXAMPLES: 



$OPTIONHELP1=These  files  are  absolutely  necessary  for  \nthe
program to work. 
$OPTIONHELP2=These are optional bitmap and icon files. 

See also; 
$OPTIONAL 
$USER-OPTION 

$SMALL-METER-COLOR     
This  changes the colour of  the small  percent meter.  It  takes the same
syntax as $TEXT-BACKGROUND 

The Syntax is; 
$SMALL-METER-COLOR=<value> 

EXAMPLE: 
$SMALL-METER-COLOR=$00808080 

See also; 
$TEXT-BACKGROUND 

$UNZIP     
Chief's Installer Pro features support for unzipping files. The UNZIP support
is compatible with PKZIP (tm) 2.x ZIP archives. This command is used to
unzip a file during the installation. You have have an unlimited number of
$UNZIP lines in your INF file, each of them specifying a single file. For the
$UNZIP command to work,  the file WINSTALZ.DLL must be present
on your DISK #1, and if there is more than one disk in your installation
set,  your  users  MUST  run  SETUP.EXE,  and  not  INSTALL.EXE -
otherwise, the unzip will most certainly fail. 

The $UNZIP command can also be used in the $DISK lines, to specify that
a ZIP archive should be unzipped from a particular installation disk. In this
case, the files in the ZIP archive will only go to the directory supplied as a
parameter to $UNZIP. 

Please note that if the ZIP archive contains sub-directories, the directory
structure  inside  the  ZIP  archive  will  be  created/restored  in  the  target
directory. This behaviour cannot be changed. 
Please note also that this command cannot handle ZIP archives which are
split across more than one disk. 

The Syntax is; 
$UNZIP=<zipfile>;<target directory>;<CODE> 

or, if used on a $DISK# line; 



$DISK#=$UNZIP;<zipfile>;<target directory>;<CODE> 
"Code" specifies how to deal with files which already exist in the target
directory. Possible values are; 

[a] OVERWRITE-ALL (overwrite all existing files without warning) 
[b] OVERWRITE-OLDER (overwrite only older files [by date-stamp]) 
[c] SKIP (skip existing files) 
[d] CONFIRM (ask for confirmation before overwriting existing files) 

EXAMPLES: 
$UNZIP=$SOURCEDIR\BIN.ZIP;$DEST\BIN;SKIP 
$UNZIP=$TEMPDIR\TROOK.001;$DEST\TROOK;OVERWRITE-OLDER 
$DISK3=$UNZIP;$TEMPDIR\TROOKCFG.002;$DEST\
TROOKCFG;CONFIRM 

See also; 
$DISK 



Batch Files     
Chief's  Installer  Pro  provides  support  for  running  commands  via  batch
files. For this purpose, Chief's Installer Pro implements a batch language
and batch commands which are roughly similar to the DOS commands and
batch language, but which are different in some respects. 
Batch  commands  provide  a  very  effective  means  of  extending  the
functionality of Chief's Installer Pro. Since it is impossible to envisage in
advance all the possible scenarios in which the installer will be used, this
type  of  functionality  presents  the  best  approach  to  increasing  the
programs's flexibility. 

The batch features are activated by the $BATCH-FILE reserved word. This
specifies  the  name  of  a  batch  file.  Each  batch  file  can  contain  an
unlimited number of lines - but note that the bigger a batch file is, the
longer it will take to read it.  Each line in a batch file can be up to a
maximum of 200 characters. 

NOTES:     
1. Whatever is done by these batch commands will mostly NOT be undone
by the uninstaller. 
2. Batch files are executed in the order in which they appear, and are
processed  immediately  after  the  files  have  been  installed  (after  $ini,
$fonts, $reg-data, and $autoexec.bat, but before $pre-exec, and $exec) 
3. Certain reserved words are invalid when used in a batch file that is run
from SETUPINF.INF  -  e.g.,  $DEST,  and  $TARGET,  since  they  might  be
changed by the user after the main install  dialog is  loaded. The same
thing goes for $SOURCEDIR, which might sometimes be changed by the
user. 

See also; 
BATCH COMMANDS 
$BATCH-FILE 

BATCH COMMANDS     
Chief's Installer Pro batch files support sundry commands. Many of them
operate like their DOS, OS/2, or Windows NT counterparts, but most are
different in various respects. The main point is that if you are familiar with
the  DOS  internal  commands,  many  of  these  commands  will  also  be
familiar to you. Below is a list of batch commands, and a summary of their
syntax, and what they do. 

#CONST 
#DEFINE 
#INCLUDE 
APPENDFILE 
ATTRIB 
BEEP 



CD 
COPY 
CREATEFILE 
DEL 
DELAY 
DISPLAY 
EXEC 
EXECHIDDEN 
EXECWAIT 
EXIT 
EXITWINDOWS 
EXITWINDOWSEXEC 
EXPANDFILE 
FOR 
GOTO 
HALT 
IF CHOICE 
IF CONFIRM 
IF CPU 
IF DISKFREE 
IF ERRORCODE 
IF EXIST 
IF FSIZE 
IF HAS-FPU 
IF INPUT 
IF ISDIRECTORY 
IF NOT-CONFIRM 
IF NOT-ERRORCODE 
IF NOT-EXIST 
IF NOT-FSIZE 
IF NOT-ISDIRECTORY 
IF SLANGUAGE 
IF VMODE 
IF WINVER 
LOADCTL3D 
MD 
RD 
REN 
SAY 
UNLOADCTL3D 
UNZIP 
WRITEBAT 
WRITEINF 
WRITEINI 
WRITETEXT 

See also; 
BATCH FILES 



#CONST or $CONST     
This command is used to define some  GLOBAL constants in a Chief's
Installer Pro batch file. The defined constants then apply throughout the
batch file. Wherever Chief's Installer Pro encounters the defined constant
in the batch file, it is replaced by the value which you assigned to it. Such
constants should be defined at the beginning of the batch files. You
can have an unlimited number of #CONST lines. 

This command is similar to the #DEFINE command, but is different in a
very important respect - with #DEFINE, parts of any word that matches
will  be replaced -  however,  with #CONST,  only whole words will  be
replaced. 

The changes are done in memory - so the physical contents of the batch
file are unaltered. 

Restrictions and features;     
1. #CONST can only be used ONCE for any particular constant in a batch
file. 
2. Each #CONST entry must be on a line by itself. 
3. You cannot use one #CONST constant in the definition of another one. 
4. If you use the constant's name (or any part of its name) as part of its
value, it will be taken as a literal value. 
5. A value assigned to a constant with $DEFINE can be used in defining
the value  of  a  $CONST constant.  This is  one important advantage
over using $DEFINE. 

The syntax is: 
#CONST <constant> = <value> 

Examples; 
#CONST OLDDIR=$WINDIR\PROG\OLD 
#CONST MYCOMMAND=$DEST\BIN\MYPROG.EXE 

See also; 
#DEFINE 

#DEFINE or $DEFINE     
This command is used to define some  GLOBAL constants in a Chief's
Installer Pro batch file. The defined constants then apply throughout the
batch file. Wherever Chief's Installer Pro encounters the defined constant
in the batch file, it is replaced by the value which you assigned to it. Such
constants should be defined at the beginning of the batch files. You
can have an unlimited number of #DEFINE lines. 

The changes are done in memory - so the physical contents of the batch
file are unaltered. 



Restrictions;     
1. $DEFINE can only be used ONCE for any particular constant in a batch
file. 
2. Each #DEFINE must be on a line by itself. 
3.  You  cannot  use  one  defined  constant  in  the  definition  of
another one. 
4. You CANNOT use the constant's name (or any part of its name)
as part of its value. However, you can use the (already defined)
constant's  name in  a  constant  that  you  are  defining  with  the
#CONST command. 
5. Each constant defined in this way MUST be entirely unique. This is
because partial matches will be changed as well. Thus, for example, you
cannot have one constant called  DIR and another one called  DIREC, if
you are going to use #DEFINE with DIR. This is because when occurences
of DIR are being changed, the places where those letters occur in DIREC
(i.e.,  the first 3 letters of  DIREC) will  be changed as well  -  and this is
probably not what you want. Also, defining a constant as COMMAND and
another one as COMMAND2 or MYCOMMAND is not advisable, because
they have the string  "COMMAND" common to them all.  Please note
this point. 

GOOD    TIP  : If  you must  use similar  names,  the  best  thing to  do is  to
interpose  another  character  after  the  FIRST  character  of  the  common
parts.  For example, you could have a constant called  COMMAND,  and
others called C1OMMAND, C2OMMAND, C3OMMAND, etc. 

ANOTHER   TIP  : Most of these restrictions do not exist when you use the
#CONST command. That command is identical to this one, except that it
only changes whole words. 

The syntax is: 
#DEFINE <constant> = <value> 

Examples; 
#DEFINE OLDDIR=$DEST\BIN\OLD 
#DEFINE COMMAND=C:\4DOS\4DOS.EXE 

The following examples are NOT allowed;     
#DEFINE COPY=COPY *.* A:\ 
#DEFINE COMMAND=COMMAND.COM 
#DEFINE COMM=C:\DOS\COMMAND.COM 

This is because they represent an attempt to use the constants which are
being defined (or part of the constants' names) in the values assigned to
the constants.  This will  either lead to an almighty CRASH, or to
unpredictable and random results. 

See also; 



#CONST 

#INCLUDE or $INCLUDE     
This  allows  you to  import  the  contents  of  another  Chief's  Installer  Pro
batch file into the currently running batch file,  at  the place where the
command was used. This is the only way in which you can call a Chief's
Installer Pro batch file from another one. 

Note  that  while  nested  includes  may  sometimes  work,  they  are  NOT
supported (i.e., please do not #INCLUDE a file into another one which was
itself called with the #INCLUDE command). 

The Syntax is; 
#INCLUDE <filename> 

EXAMPLE: 
#INCLUDE $TEMPDIR\PROG2.CHF 

APPENDFILE     
This is one of the text file commands. It adds a string to text to the end of
a text (ASCII) file. If the specified file does not exist, a new one is created. 

The Syntax is; 
APPENDFILE <filename>;<string> 

EXAMPLE: 
APPENDFILE C:\AUTOEXEC.BAT;SET TROOKTROG=C:\TROOKT 

See also; 
WRITETEXT 

ATTRIB     
Change  and/or  set  the  attributes  bits  of  a  file.  Attribute  bits  can  be
concatenated (separated with a semi-colon). The plus sign ("+") turns on
an attribute bit, and the minus sign ("-") turns it off. 

In this respect, "R" = read only; "S" = system file; "A" = archive; "H"
= hidden. 

The Syntax is; 
ATTRIB <filename>;<attr>[;other attrs] 

EXAMPLE: 
ATTRIB $DEST\TROOK.CNF;+R;-H;-A;+S 



BEEP     
Make  a  beeping  noise  on  the  PC's  speaker.  This  calls  the  Windows
MessageBeep() API function. 

CD or CHDIR     
Change to another directory. 

The Syntax is; 
CD <new directory> 

EXAMPLE: 
CD $DEST\BIN\SOURCE 

See also; 
MD 
RD 

COPY or CP     
Copy  a  file  (or  a  group  of  files)  from  one  location  to  another.  This
command simply copies the files (compressed files are not expanded). 

This  command  takes  two  parameters  -  the  source  file  and  the  target
file/directory. If the source file is a single file name (i.e., no wildcards) then
the second parameter can be a file name or  a directory.  If  the source
filename contains wildcards, the second parameter MUST be a directory.
Error codes are returned in ERRORCODE. 

The Syntax is; 
COPY <source-file> [;] <dest-file> 

EXAMPLE: 
COPY  $DEST\TROOK.*  $DEST\TROOK\BACKUP 

See also; 
EXPANDFILE 

CREATEFILE     
This creates a new file (with zero bytes). If  any file of the same name
already exists, the existing file is overwritten. Please note this point. The
only purpose of using this is  to ensure that a log of the file is kept in
UNINSTAL.LOG so that the uninstaller can delete it if necessary (i.e., if you
are creating a new file on the system with batch commands, you can call
CREATEFILE first, and then use any other command (e.g., APPENDFILE, or
WRITETEXT). 

The Syntax is; 



CREATEFILE <filename> 

EXAMPLE: 
CREATEFILE $DEST\TROOK\TROOK.CFG 

See also; 
APPENDFILE 
WRITETEXT 

DEL or RM     
Delete a file or a group of files. Note that while wildcards are allowed, the
wildcard "*.*" will  NOT be accepted. The user will get a hard-coded error
message in English. 

The Syntax is; 
DEL <filename> 

EXAMPLES: 
DEL $TEMPDIR\*.$$$ 
DEL $DEST\MYFILE.BAK 

DELAY     
Pause for some time. This command takes one parameter - the number of
SECONDS to wait for. If no parameter is supplied, there will be a pause for
one second. 

The Syntax is; 
DELAY <seconds> 

EXAMPLE: 
DELAY 5 

DISPLAY     
Shows a modal dialog box in which you can display some text (e.g., while
doing  some  other  stuff  in  the  background).  This  command  takes  one
parameter - either the text to be displayed in the dialog, or OFF (to turn
off the display dialog). Note that the display dialog does not have any
buttons, and has to be removed by "DISPLAY OFF". 

The Syntax is; 
DISPLAY <message> 
 or 
DISPLAY OFF 

EXAMPLE: 
DISPLAY I am now processing files \n \n Please wait ... 



EXEC or RUN     
Run a  program.  Processing of  the  batch file  continues  as  soon as  the
program is executed. 

The Syntax is; 
EXEC <program> [program parameters] 

EXAMPLE: 
EXEC NOTEPAD.EXE $DEST\README.TXT 

See also; 
EXECHIDDEN 
EXECWAIT 

EXECHIDDEN or RUNHIDDEN     
Run a program, with it's main window hidden. Processing of the batch file
continues as soon as the program is executed. Note that the program to
be executed must be self-terminating, since your user will have no way of
terminating it. It will NOT show up in the task list. This command is useful
for running something (like a time-stamping program) behind the scenes. 

The Syntax is; 
EXECHIDDEN <program> [parameters] 

EXAMPLE: 
EXECHIDDEN $DEST\CONFIG.EXE /NewInstall 

See also; 
EXEC 
EXECWAIT 

EXECWAIT     
Run a program. Processing of the batch file will stop until the program is
closed.  This  will  fail  if  used  to  run  DOS  sessions  under  OS/2 (i.e.,
processing will continue immediately - just like the EXEC command). 

The Syntax is; 
EXECWAIT <program> [parameters] 

EXAMPLE: 
EXECWAIT NOTEPAD.EXE $TEMPDIR\README.NOW 

See also; 
EXEC 
EXECHIDDEN 



EXIT or RETURN     
Exit from the currently running batch file. The installer goes to the next
stage. This command takes no parameter. 

See also; 
HALT 

EXITWINDOWS     
This  command takes no parameter.  If  it  is  used, then Windows will  be
closed down immediately, without giving the user any say in the matter.
Note that this command uses the EXITWINDOWS() API call. Thus it will
fail if any program refuses to terminate (e.g., if the user has a DOS session
open). 

See also; 
EXITWINDOWSEXEC 

EXITWINDOWSEXEC     
Shut down Windows, run a DOS program, and then restart Windows again.
This command takes one parameter - the name of the DOS program to be
executed. It is NOT recommended to use this command at all, since if it is
used that is really the end of your installation - Windows will restart, and
just return the user to whatever happens to be the Windows shell. 
Note that this command uses the EXITWINDOWSEXEC() API call. Thus it
will fail if any program refuses to terminate (e.g., if the user has a DOS
session open). 

See also; 
EXITWINDOWS 

EXPANDFILE or LZEXPAND     
Copy a file (or a group of files) from one location to another. If a file is
compressed (with Microsoft's  COMPRESS.EXE) the file will  be expanded
(using the functions in LZEXPAND.DLL). 

This  command  takes  two  parameters  -  the  source  file  and  the  target
file/directory. If the source file is a single file name (i.e., no wildcards) then
the second parameter can be a file name or  a directory.  If  the source
filename contains wildcards, the second parameter MUST be a directory.
Error codes are returned in ERRORCODE. 

The Syntax is; 
EXPANDFILE <source-file> [;] <dest-file> 



EXAMPLE: 
EXPANDFILE $DEST\WORK\TROOK.C?? $DEST\TROOK 

See also; 
COPY 

FOR     
This is the FOR loop. It runs a specified command for each file in a set of
files. 

The Syntax is; 
FOR %variable IN (set) DO command [command-parameters] 

EXAMPLE: 
FOR %i IN ($DEST\*.TXT) DO NOTEPAD.EXE %i 

GOTO     
Jump to a pre-defined label in the batch file. Labels, when defined, must
begin with a colon (":") followed immediately with the label's name. When
using GOTO, you must not include the colon. Processing continues after
coming to the end of the label, unless the end of the label contains a jump
to another label (with GOTO). 

The Syntax is; 
GOTO <label> 

EXAMPLE: 
GOTO END 

HALT     
Terminate  the  installation.  This  not  only  exits  the  batch  file  currently
running, it also closes down the installer itself. Use with care!!! 

See also; 
EXIT 

IF CHOICE     
This  command  allows  the  user  to  choose  any  one  out  of  up  to  10
predefined options (a radio button will be presented for each option). The
options are a series of strings, separated by semi-colons (and numbered
automatically), the last of which will be the text prompting for the choices.
If any of the buttons is checked, and the user clicks on "OK" the condition
returns  TRUE,  the  number  of  the  selected  option  will  be  returned  in
CHOICE, and the command attached to the condition will be executed (see



the sample batch file SETUP.CHF for an example of this being used to ask
for the user's language). 

The Syntax is; 
IF CHOICE "<choices;prompt>" <command> [CHOICE] 

EXAMPLE: 
IF CHOICE "Mono;Colour;Please choose your monitor type" GOTO CHOICE 
IF CHOICE "AMD;Intel;Cyrix;Select your CPU vendor" COPY CHOICE.CPU $DEST 

IF CONFIRM     
This allows you to prompt the user for a YES or NO. It presents a message
box with a question (posed by you) and if the user clicks on YES, then the
condition returns TRUE and the attached command is executed. If the user
clicks on NO, then the condition returns FALSE and the attached command
is ignored. 

The Syntax is; 
IF CONFIRM "<question>" <command> 

EXAMPLE: 
IF CONFIRM "Should I abort the install?" HALT 

See also; 
IF NOT-CONFIRM 

IF CPU     
This allows you to test for the microprocessor (CPU) inside the user's PC,
without any input from the user. If the user's CPU is the one specified by
you,  then the condition returns TRUE.  Possible  CPU values are  80386,
80486, or P5 

The Syntax is; 
IF CPU <cpu-value> <command> 

EXAMPLE: 
IF CPU P5 Say you have a Pentium processor! 

See also; 
IF HAS-FPU 

IF DISKFREE     
This allows you to test for the amount of free disk space on the current
drive. This takes an operator as the first parameter, and the size you are
testing for, as the second parameter. For the operator, you can use either
the "greater than" (">") or the "less than" ("<") symbols. Whether the



condition returns TRUE or not depends on the operator used. The "size"
parameter should be a whole number, in bytes. 

The Syntax is; 
IF DISKFREE <operator> <size> <command> 

EXAMPLES: 
IF DISKFREE > 1024 SAY Free Space is Greater than 1kb! 
IF DISKFREE < 2048000 GOTO ABORT 

IF ERRORCODE     
The result  of  every  batch operation  is  returned in  an internal  variable
called ERRORCODE. This is so that you can receive some (rudimentary)
feedback on each command (since you will not receive any error message
if a command fails). You can test for the value of ERRORCODE after every
command. 

Possible ERRORCODE values; 
[a]  0  = operation successful; no error 
[b]  1 = syntax error; the command was not executed at all 
[c] -1 = some processing error or the other; this is what to watch for! 

The Syntax is; 
IF ERRORCODE <code> <command> 

EXAMPLE: 
IF ERRORCODE -1 SAY The last command failed! 

See also; 
IF NOT-ERRORCODE 

IF EXIST     
Test for whether a file exists. If the file exists, the condition is TRUE and
the attached command is executed. 

The Syntax is; 
IF EXIST <filename> <command> 

EXAMPLE: 
IF EXIST C:\AUTOEXEC.BAT APPENDFILE C:\AUTOEXEC.BAT LOADHIGH $DEST\TROOK.SYS 

See also; 
IF NOT-EXIST 

IF FSIZE     
Tests whether the size of a file is exactly the same as the size you specify.



If so, the condition returns TRUE. The "size" parameter should be a whole
number, in bytes. 

The Syntax is; 
IF FSIZE <filename> <size> <command> 

EXAMPLE: 
IF FSIZE $DEST\PROG.EXE 23494 GOTO SAFE 

See also; 
IF NOT-FSIZE 

IF HAS-FPU     
This does not require any input from the user. If the user's computer has
got  a  Maths Co-processor  (a  floating point  chip),  the condition  returns
TRUE, and the attached command is executed. It returns FALSE if there is
no maths co-processor. 

The Syntax is; 
IF HAS-FPU <command> 

EXAMPLE: 
IF HAS-FPU SAY You have a Maths Chip! 

See also; 
IF CPU 

IF INPUT     
This presents an input dialog to the user, where the user can enter some
text, in answer to a prompt. If text is entered and the user clicks on "OK"
then the condition returns TRUE. The text entered by the user is returned
in a variable called INPUT, which you can use on the same line only. 

In another permutation, you can also check for the text that was entered,
by using the "==" operator. 

The Syntax is; 
IF INPUT "<prompt>" <command> [INPUT] 
or 
IF INPUT "<prompt>" == <string> <command> [INPUT] 

EXAMPLES: 
IF  INPUT  "Please  enter  your  TROOK  filename"  NOTEPAD.EXE
INPUT 
IF INPUT "Your ID., please:" == FRED GOTO CONTINUE 



IF ISDIRECTORY     
Tests for the existence of a directory. 

The Syntax is; 
IF ISDIRECTORY <directory-name> <command> 

EXAMPLE: 
IF ISDIRECTORY C:\DRAG CD C:\DRAG 

See also; 
IF NOT-ISDIRECTORY 

IF NOT-CONFIRM     
This allows you to prompt the user for a YES or NO. It presents a message
box with a question (posed by you) and if the user clicks on NO, then the
condition returns TRUE and the attached command is executed. If the user
clicks  on  YES,  then  the  condition  returns  FALSE  and  the  attached
command is ignored. 

The Syntax is; 
IF NOT-CONFIRM "<question>" <command> 

EXAMPLE: 
IF NOT-CONFIRM "Should I abort the install?" GOTO CONTINUE 

See also; 
IF CONFIRM 

IF NOT-ERRORCODE     
Allows you to test for the value of ERRORCODE after each batch operation.
See the IF ERRORCODE command for full description. 

The Syntax is; 
IF NOT-ERRORCODE <code> <command> 

EXAMPLE: 
IF NOT-ERRORCODE 0 SAY An error has occured! 

See also; 
IF ERRORCODE 

IF NOT-EXIST     
Tests for the existence of a file. It returns TRUE if the specified file does
NOT exist. 

The Syntax is; 



IF NOT-EXIST <filename> <command> 

EXAMPLE: 
IF NOT-EXIST TRAGG.CNF CREATEFILE TRAGG.CNF 

See also; 
IF EXIST 

IF NOT-FSIZE     
Tests for the size of a file. If the file's size does not exactly match the
specified size, the condition returns TRUE. 

The Syntax is; 
IF NOT-FSIZE <filename> <size> <command> 

EXAMPLE: 
IF NOT-FSIZE PROG.EXE 53333 SAY This file may have a VIRUS!!! 

See also; 
IF NOT-FSIZE 

IF NOT-ISDIRECTORY     
Tests for the existence of a directory. Returns TRUE if the directory does
NOT exist. 

The Syntax is; 
IF NOT-ISDIRECTORY <directory-name> <command> 

EXAMPLE: 
IF NOT-ISDIRECTORY $DEST\BAK MD $DEST\BAK 

See also; 
IF ISDIRECTORY 

IF SLANGUAGE     
Tests for the value of the "sLANGUAGE" setting in the "INTL" section of the
WIN.INI file. If there is an entry, the condition returns TRUE and the value
in  that  setting  is  returned  in  an  internal  variable  called  SLANGUAGE
which can be used on the same line. 

The Syntax is; 
IF SLANGUAGE [== STRING] <command> [SLANGUAGE] 

EXAMPLES: 
IF SLANGUAGE GOTO SLANGUAGE 
IF SLANGUAGE == ENG SAY Your Windows speaks English! 



IF VMODE     
Allows you to test for the user's display driver mode, without any input
from the user. Possible values are CGA, EGA, VGA, SVGA, or SSVGA. The
first three speak for themselves. "SVGA" stands for 800*600 and "SSVGA"
stands for 1024*768, or higher screen resolutions. 

The Syntax is; 
IF VMODE <value> <command> 

EXAMPLE: 
IF VMODE SVGA SAY Your display is 800 * 600 

IF WINVER     
Allows you to test for the version of Windows which the user is running.
There are a number of ways to test for Windows versions (see the sample
batch file CHIEFPRO.CHF for details), but the numeric method (1 to 11 -
starting from Windows 3.0 to Windows NT) may be the easiest. 

1  = Windows Version 3.00 
2  = Windows Version 3.10 (no network) 
3  = Windows for Workgroups 3.10 (networked) 
4  = Windows Version 3.10 (with Win32s, no network) 
5  = Windows for Workgroups 3.10 (with Win32s, networked) 
6  = Windows Version 3.11 (no network) 
7  = Windows for Workgroups Version 3.11 (networked) 
8  = Windows Version 3.11 with Win32s 
9  = Windows for Workgroups 3.11 (with Win32s, networked) 
10 = Windows 95 
11 = Windows NT 

The Syntax is; 
IF WINVER <code> <command> 

EXAMPLE: 
IF WINVER 10 SAY You are running Windows 95 

LOADCTL3D     
Loads CTL3DV2.DLL or CTL3D.DLL (in that order of preference), if either of
them is found on the system. For each call to this command, there must
be a corresponding call to UNLOADCTL3D. 

See also; 
UNLOADCTL3D 



MD or MKDIR     
Creates a directory. 

The Syntax is; 
MD <directory name> 

EXAMPLE: 
MD $DEST\TRRUTT 

See also; 
RD 
RD 

RD or RMDIR     
Removes a directory. 

The Syntax is; 
RD  <directory name> 

EXAMPLE: 
RD $DEST\TRRUTT 

See also; 
CD 
MD 

REN or MV     
Renames a file. This command takes two parameters - the old name of the
file, and the new name of the file. Please note that you cannot rename a
file across drives - and that it is preferable to supply the full pathnames for
the files. 

The Syntax is; 
REN <old-name> <new-name> 

EXAMPLE: 
REN $DEST\FRED.TAR $DEST\FRED.GZ 

SAY or ECHO     
Displays a message in a standard Windows message box. 

The Syntax is; 
SAY <message> 

EXAMPLE: 
SAY Hello World! 



UNLOADCTL3D     
Unloads  CTL3DV2.DLL  or  CTL3D.DLL  (if  it  had  been  loaded  with  the
LOADCTL3D command). Please do not use this command unless you have
previously  used  the  LOADCTL3D  command.  This  command  takes  no
parameter. 

See also; 
LOADCTL3D 

UNZIP     
UNZIPs a ZIP archive. The parameter are the same as those taken by the
$UNZIP reserved word. Please check the documentation on $UNZIP. 

The Syntax is; 
UNZIP <zip-file>;<dest directory>;<code> 

See also; 
$UNZIP 

WRITEBAT     
Writes an entry into a Chief's Installer Pro batch file (at run-time) This
takes 2 parameters, separated by a semi-colon - the name of the batch
file to write into, and the string to write into the batch file. The file will be
written  to  (transparently)  in  the  appropriate  format  (i.e.,  compiled  or
ASCII), so it does not matter whether the file has been compiled or not. 

The Syntax is; 
WRITEBAT;<batch file>;<string> 

EXAMPLE: 
WRITEBAT $DEST\REG.CHF;SAY You are not registered! 

See also; 
WRITEINF 

WRITEINI     
Writes an entry into an INI file. This takes the same parameters as the
$INI reserved  word,  except  that  (unlike  $INI)  it  cannot  take  a  USER-
OPTION as a parameter. Please see the documentation on that reserved
word. 

See also; 
$INI 



WRITEINF     
Writes an entry into a Chief's Installer Pro INF file (at run-time) This takes 2
parameters, separated by a semi-colon - the name of the INF file to write
into, and the string to write into the INF file. The file will  be written to
(transparently)  in the appropriate format (i.e.,  compiled or ASCII),  so it
does not matter whether the file has been compiled or not. 

The Syntax is; 
WRITEINF;<INF file>;<string> 

EXAMPLE: 
WRITEINF $TEMPDIR\WINSTALL.INF;$CLEANUP=$DEST\*.CHF 

See also; 
WRITEBAT 

WRITETEXT     
Writes  a  string  into  a  text  (ASCII)  file.  This  command  takes  three
parameters - the name of the text file to write to; the line number to write
to (or "last" to append to the file); and the string to write into the file. 

The Syntax is; 
WRITETEXT <filename>;<line number>;<string> 

EXAMPLES: 
WRITETEXT $DEST\TTT.TXT;1;This is the first line 
WRITETEXT $DEST\TTT.TXT;LAST;This is the last line 

See also; 
APPENDFILE 



COMMAND LINE OPERATION     
Chief's  Installer  Pro normally  operates  in  an interactive way.  When the
program INSTALL.EXE is run, a dialog box will be presented to the user,
from where the user can select options,  click on a button to start  the
installation, etc. While this is sufficient in most cases, there are situations
in which you might want to use your own "pre-installer" (e.g., instead of
my own SETUP.EXE or for any other purpose). Note that this option is not
open to you if you are using SETUP.EXE. 

For such situations, Chief's Installer Pro provides you with the flexibility of
running  INSTALL.EXE with command line parameters.  There are three
types of parameters that the program can take, and you can use one, or
all, or some, or none of them, in any combination. 

The  first  is  /$TARGET=<target  directory>.  When  this  parameter  is
used, Chief's Installer Pro will assume that all the options which you have
enabled in your INF file have been accepted, and will  by-pass the first
dialog - the installation will start straight away, without the user having
the opportunity to select or unselect any of the options manually. This is
useful  if  you  want  to  ensure  that  the  installation  is  carried  out  in  a
particular way (e.g., to ensure a standard setup on all computers in your
company). If you are using this parameter, it should be the first one that
is supplied. 

Another parameter you can supply is the name of the INF file to use for
the installation. Chief's Installer Pro defaults to  WINSTALL.INF. You can
however  specify  another  file  name for  this  purpose.  If  this  is  used,  it
should be the first parameter (if the /$TARGET= parameter is not used)
or the second parameter (if  /$TARGET= is used). This parameter will be
taken as paramstr(1) or argv[1], because INSTALL.EXE does not include
the /$TARGET= switch in the count of command line parameters. 

The final parameter which you can supply is the  source directory. You
cannot use this parameter without using the one which specifies the name
of the INF file. If this parameter is used, it should be the last one. If you
specify an INF file, it is advisable to also use this parameter to specify the
source  directory  for  the  installation.  This  parameter  will  be  taken  as
paramstr(2) or argv[2]. 

Note that when you choose to run Chief's Installer Pro in this way, the
program will faithfully do whatever you say, and will not necessarily verify
any of these parameters. This option is provided for added flexibility - but
if you use it, you are on your own, and it us up to you to make sure that
your program does all the necessary authentification of the parameters
you are passing. 

In my opinion, it is far better to run Chief's Installer Pro in the normal way,



but  to  allow  the  installer  to  click  on  the  "START  INSTALL"  button
automatically, by using the $AUTO-CLICK-BUTTON reserved word (with
a parameter of  1). That way, all the normal internal checks would have
been carried out, and you would be able to use SETUP.EXE. 

The Syntax is; 
INSTALL.EXE  [/$target=<target  dir>]  [<INF  filename>  <source
dir>] 

EXAMPLES: 
INSTALL.EXE /$target=C:\CHIEFPRO 
INSTALL.EXE /$target=C:\CHIEFPRO C:\TEMP\CHIEF.INF 
INSTALL.EXE /$target=C:\CHIEFPRO C:\TEMP\CHIEF.INF A:\ 
INSTALL.EXE A:\CHIEF2.INF 
INSTALL.EXE B:\CHIEF2.INF B:\ 

See also; 
$AUTO-CLICK-BUTTON 



THE UNINSTALLER     
Many Windows programs are easy to install, but most are not so easy tp
remove, because of INI files and DLLs thrown all over the place. Users who
wish to uninstall their programs face a hazardous task in which they may
delete the wrong files, or remove the wrong entries in INI files. This may
then  make  Windows  unusable,  necessitating  an  expensive  re-install  of
Windows. 

What this means is that many Windows users are reluctant to try out new
programs on their systems because of hassles of removing the programs if
they  don't  want  them any  more.  This  may  mean that  people  will
never  ever  get  to  see  your  wonderful  program  :).  Some  other
people have to spend a lot of money on commercial uninstallers, which
attempt to snoop round the system. The fact that they are trying to undo
someone  else's  work  means  that  this  is  often  a  hit-or-miss  affair  -
sometimes  leading  to  an  expensive  program not  getting  the  job  done
properly. Enter the UNINSTALLER!. 

Chief's  Installer  Pro  includes  an  "uninstall"  program  (UNINSTAL.EXE).
Which will  undo anything that Chief's Installer Pro did.  If  you used the
$MAKE-UNINSTALL-LOG reserved  word  in  your  WINSTALL.INF  file,
Chief's  Installer  Pro  will  create  a  log  file  called  UNINSTAL.LOG in  the
target directory. This file contains details of every change made to the
system by Chief's Installer Pro. 

The  user  can  subsequently  "uninstall"  your  program  by  running
UNINSTAL.EXE.  The  uninstall  program  will  read  the  log  file
UNINSTAL.LOG and use its contents to undo everything it did during the
installation.  This  includes  deleting  the  installed  files,  any  directories
created by  Chief's  Installer  Pro,  any Program Manager  groups or  icons
created by Chief's Installer Pro, any entries made into INI files by Chief's
Installer Pro, etc.  

Having an uninstaller is one of the requirements for the
Windows 95 logo!!!

Note that, unless the INI files are in your program's home directory, the INI
files themselves will NOT be deleted. Only the entries made into them by
Chief's Installer Pro will be deleted. This might result in "orphan" INI files -
i.e., INI files with nothing inside them. I believe that this is preferable to
deleting all the INI files themselves. This is because entries could have
been made into existing INI files, and deleting such files will be disastrous.
Therefore,  I  leave  it  to  users  to  delete  any  orphan  INI  files  manually
("better safe than sorry" is the motto here - and, also, "beware Murphy's
law"). 



Shared  files  (DLL,  VBX,  and  DRV  files)  installed  into  the  Windows  or
Windows  SYSTEM directory  are  a  special  case.  If  a  copy  of  such  files
already existed when the installation was running, no log will be made of
them, and the uninstaller will NOT delete them (this is because they were
obviously not put there by the installer). In cases where no copy of the file
was found at install time, the file will be logged, and the uninstaller will
delete  it  -  but  after  asking  the  user  for  confirmation.  This  is  because
although the file was put there by the installer, it may (after the user has
installed other programs) by needed by other programs. This is very often
the  case  with  Visual  Basic  applications,  and  applications  which  use
BWCC.DLL and/or CTL3Dxx.DLL. 

I believe that the uninstaller is a good marketing point for your program.
First,  there is the perception that a person who provides an uninstaller
with his program must be very confident about the program itself. Also,
users have nothing to lose by trying your program, since removing it is
simply  a  matter  of  clicking  on  the  icon  for  the  uninstaller,  and  then
supplying  the  home directory  of  the  program to  be  uninstalled.  If  the
uninstaller does not find the log file in that directory, it  aborts with an
error message. If the file is found, the user is given ONE opportunity to
confirm that he or she does really want to uninstall the program. 

The Uninstaller can take optional parameters. The first is the home
directory of the program to be uninstalled. This means that you can pass
your  program's  directory  ($DEST)  as  a  parameter  to  UNINSTAL.EXE
when you are creating your program's icons with the $ICON command. 
e.g: $ICON=$DEST\UNINSTAL.EXE $DEST;Uninstall my Program! 

The second parameter that the uninstaller can take is the name of the
LOG file to use for the uninstall. This parameter is normally optional (the
program will  default to UNINSTAL.LOG). But note that if a filename was
supplied as a parameter to the $MAKE-UNINSTAL-LOG reserved word, then
this parameter becomes  MANDATORY here (i.e., you must supply that
filename as a  second parameter to UNINSTAL.EXE when you create the
icons with the $ICON reserved word). Please note this point. 

e.g:  $ICON=$DEST\UNINSTAL.EXE  $DEST  VER2.LOG;Uninstall  my
Program! 

Support for non-English languages is provided for the uninstaller by the
use of string tables. These can be compiled into a DLL which must be
called UNINST.DLL. If this file is not found at run time (it must be in the
same directory  as  UNINSTAL.EXE)  then the  default  English  string  table
inside UNINSTAL.EXE will be used. 

A copy of the English language version of the resource script (UNINST.RC)
is provided for you to translate to your chosen language. Please note that
if you choose to create your own translations and put them in the DLL, you



are on your own. 

The uninstaller will optionally uninstall the program in such a way that the
deleted  files  cannot  be  undeleted.  To  enable  this  feature,  use  the
parameter  OVERWRITE in the  $MAKE-UNINSTALL-LOG line. Note that
when this is used, uninstalled files and directories cannot be undeleted, no
matter  what  is  attempted.  They  are  first  deleted,  then  they  are
overwritten by a 1 byte file, and then that file is deleted. Any such file that
can be undeleted (in most cases, no file can be undeleted) will only delete
to  a  file  containing  1  byte  (of  garbage  data).  Therefore,  it  is  not
recommended that this feature should be used. It is only there because of
a specific request, and if you use it, you are on your own. 

See also; 
$ICO 
$ICON 
$MAKE-UNINSTALL-LOG 



CREDITS     
Many thanks to the following: 
1.  Claus Ziegler, ZieglerSoft, Denmark - a great Windows guru! Thanks
for everything, and for the Danish translations of the string tables. 

2.  Joachim Rehmet and Juergen Kneifel - for the German translations
of the string tables. 

3. Drs. Bob Swart - for the Dutch translations of the string tables. 

4. Gary W.Rohn - for sharing the source code to your FI program. 

5. Agustin Cernuda - for the Spanish translations of the string tables. 

6.  Bimmer  (Per  Bakkendorff) -  for  the  Norwegian  and  Swedish
translations of the string tables. 

7. Antoine Desir and Claude Daneluzzo - for the French translations of
the string tables. 

8. Frederico Berrino - for the Italian translations of the string tables. 

9.  Dr Abimbola Olowofoyeku (The African Chief) -  for  the  Yoruba
translations of the string tables. 



DISCLAIMER     
I do NOT warantee ANYTHING concerning any of the programs or
files which make up "Chief's Installer Pro for Windows". I accept NO
RESPONSIBILITY for ANY LOSS OR DAMAGE of ANY kind, including, but not
limited to,  losses  of  a  physical,  mental,  social,  financial,  marital,  or  of
whatever nature, resulting from the use, or the purported use of Chief's
Installer  Pro  for  Windows",  or  any of  the  files  in  the package,  for  any
purpose whatsoever. I do not even warantee that the programs will not kill
you.  You use Chief's Installer Pro for Windows ENTIRELY AT YOUR OWN
RISK, and you supply it to your customers, friends, family, acquaintances,
or enemies, ENTIRELY AT YOUR OWN RISK. 

If  these  terms  are  NOT  acceptable  to  you,  then  you  have  no
licence to use or test Chief's Installer Pro, and you should DELETE
all  the  program's  files  from  all  your  disks  immediately  AND
PERMANENTLY.



FEEDBACK     
Okay. I  am keen to obtain feedback, especially from registered users. I
also  welcome suggestions  for  features.  I  cannot  promise to  implement
every suggestion, but at least, I will consider the ideas. If you have any
comments,  ideas,  suggestions,  etc.,  or  you  just  want  to  tell  me  how
wonderful the program is :)  then please feel free to contact me by e-mail.
I will try to respond if a response is appropriate. 

You can contact me by e-mail at the following internet addresses: 
laa12@potter.cc.keele.ac.uk 
chief@mep.com 

UPDATES     
This program is being constantly updated. I will endeavour to release bug
fixes as often as I receive bug reports and fix them. However, it is rather
difficult to spread the word about new releases and updates. There are a
number of internet ftp sites which are not usually busy and to which I can
therefore upload new versions. You might want to check these places from
time to time. 

FTP SITES (and directories)     

ftp.demon.co.uk  /pub/ibmpc/windows/chief/pro 
micros.hensa.ac.uk  /micros/ibmpc/win/e/e022 

COMPUSERVE     

WINSHARE LIB 4 
MSBASIC LIB 2 



REGISTRATION     
Chief's Installer Pro is distributed under the  Shareware principle. It can
be  copied  and  distributed  freely,  as  long  as  ALL the  supplied  files,
including  documentation  (this  file)  are  included,  and  NO ATTEMPT is
made to modify any of the files. 

The Shareware principle means that you get a chance to EVALUATE the
program free of charge for a reasonable period of time (in the case of
Chief's Installer Pro, a maximum of 14 days). It does not mean that you
will NOT have to pay for the program. 

This program is NOT crippled in any way, and you only get nagged when
you use the (optional) Chief's Installer Pro compiler. What this means
is that you now have the FULL version of Chief's Installer Pro. Nothing is
disabled, there are no extra files, and there is no written manual. All the
documentation  is  in  the  .HLP  file  (CHIEF.HLP)  and  the  .WRI  file
(CHIEF.WRI). 

I felt that releasing the full version in this way was necessary in order to
enable people to fully evaluate the program, being that they will be seeing
exactly what the program is.  It  also helps to ensure that when you do
register,  you  do  not  have  to  wait  for  days  or  weeks  to  receive  your
"registered copy". 

However, this approach also means that I am relying totally on people's
honesty to register.  Chief's  Installer  Pro  is  a tool  to help  programmers
concentrate on their products by not having to worry about installation
routines, thereby improving their productivity. A lot of time and effort has
gone into this program, and I am not asking for much, considering that
users will be getting a royalty-free license, which covers all their Windows
applications!  If  you  find  Chief's  Installer  Pro  useful  and  would  like  to
continue using it, or you would like to use it as the installation routine for
your own programs, then I  would encourage you to  please REGISTER
your copy. 

BENEFITS OF REGISTRATION     
1.  You  will  receive  a  serial  number  and a  registration  code  which  will
remove the nags from the compiled INF and batch files, and which will
entitle you to a upgrades to future shareware releases of Chief's Installer
Pro, up till (but not including) the next MAJOR release. MAJOR upgrades
will be numbered in whole numbers, and attract an upgrade fee of 50% of
whatever  is  the  prevailing  registration  fee.  Minor  upgrades  will  be
numbered in .10 increments, and will be free. 
2. Freedom to use Chief's Installer Pro as the installation program for an
unlimited number of your own applications. 
3. A clear conscience. 
4. Support (via e-mail) for the program. 



5. A chance to have an input into the features of future versions (I will not
accept suggestions for new features from anyone who has not registered).
6. Not having to worry that I will discover that you have used the package
as the installation routine for your program without registering <g> 
7. You will be very cool indeed. 

REGISTRATION FEE:     
£39.99    (U.K. STERLING) 
$59.99    (U.S.) 
$74.99  (Canadian) 
$80.00    (Australian) 
Kr359.99  (Danish) 

Please  NOTE  that  ALL  prices  are  subject  to  change  WITHOUT
NOTICE.     

Please  NOTE  also  that  the  correct  fee  (including
taxes/duties/charges  where  appropriate)  must  be  sent  in  all
cases. If a necessary duty/tax is not sent, the order can not be processed.

I  would  also  encourage  registrants  to  please  PRINT  their
registration requests CLEARLY. We have in the past received several
registration  requests  that  were  not  legible,  especially  the  e-mail
addresses. This is especially important for low-grade faxes. If we cannot
read  your  details,  then  it  also  follows  that  we  will  neither  be  able  to
process your registration, nor even to contact you to inform you of the
problem. 

REGISTRATION SITES     
Below are the registration sites for Chief's Installer Pro. Please send your
registration request to the registration site that is  most convenient for
you. Some of the registration sites cannot accept credit card orders. If you
are paying by credit card please check carefully that the registration site
you are dealing with can accept payment by credit card. 

YOU  CAN  SEND  THE  REGISTRATION  FEE  TO  ANY  OF  THE
FOLLOWING REGISTRATION SITES; 

Please fill the REGISTRATION FORM below. 

COMPUSERVE     
On-line  registration  is  available  under  the  SWREG scheme.  If  you  GO
SWREG, the Registration ID is:   7557. 

AUSTRALIA, NEW ZEALAND, ASIA, THE FAR



EAST     
Please send orders from these areas to: 
DAVID PERKOVIC 
DP Computing 
P.O.Box 712 
Noarlunga Center 
SA 5168 
Australia 

Internet: dpc@adam.com.au 
dpc@mep.com 
Tel:    +61 8 326 4364 
Mobile: +61 015 973 503 

Fee:  $80.00   (Australian funds) 

NOTES: 
1. Method of payment: Cheques, Money Orders 
2. Make cheques/money orders payable to: "DP Computing". 

CANADA, USA     
Please send orders from these areas to: 
Minds Edge Productions Inc. 
P. O. Box 211 
3456 Dunbar Street 
Vancouver, BC V6S 2C2 
Canada 

Internet: info@mep.com 
Fidonet: 1:153/709 
WWW: http://haven.uniserve.com/~shane/mep.html 

Fee: $59.99 (US funds) 
or:  $74.99 (Canadian funds) 

NOTES: 
1.  Method of payment: Checks, Money Orders (U.S. or Canadian
funds) 
2. Make cheques/money orders payable to: "Minds Edge Productions Inc.". 
3.  British Columbia residents should add 7% sales Tax. 
4.  Canadian Residents should add 7% GST. 

USA     
Please send orders from the USA to: 
TODD MERRIMAN 



Software Toolz, Inc. 
8030 Pooles Mill Dr. 
Ball Ground, 
GA 30107 
U.S.A. 

Fax: 770-887-5960 
Internet: software@toolz.atl.ga.us 

Fee:  $59.99 (US funds) 

NOTES: 
1.  Method of payment: Checks, Money Orders, Visa, Mastercard,
American Express. 
2. Georgia residents should add the appropriate Sales Tax 

See also; 
CREDIT CARD ORDERS 

EUROPE     
Please send orders from EUROPE to: 
HENRIK MOERK 
Survival BBS 
P.O.Box 1538 
DK-2700 Bronshoj 
Denmark 

Tel: +45 3 889 5253 
FIDO:  2:231/306 
Internet:  Eurovga@ibm.net 

Fee:  Kr 359.99 (Danish funds) 

NOTES: 
1.  Method  of  payment:  Cheques,  Eurocheques,  Money  Orders,
VISA, Mastercard/Eurocard, GIRO, Danish DANKORT, and JCB card 
2. GIRO: 1-207-4247 
3. Make cheques/money orders payable to: "HENRIK MOERK". 
4. EC residents should add 25% VAT. 

See also; 
CREDIT CARD ORDERS 

UNITED  KINGDOM,  IRELAND,  EUROPE,
EVERYWHERE ELSE     



Please send orders from these areas to: 
JOHN BARTON 
57 Baddeley Green Lane 
Baddeley Green 
Stoke on Trent 
Staffs, ST2 7JL 
ENGLAND. 

Internet:  laa12@keele.ac.uk 
  chief@mep.com 

Compuserve: 100306,1334 

Fee:  £39.99 (U.K. funds; or equivalent) 

NOTES: 
1. Method of payment: Cheques, Eurocheques, Money Orders 
2. Make cheques/money orders payable to: "JOHN BARTON". 
3. ADD: £5.00  (if sending a foreign cheque; note that foreign cheques
that do not contain this fee will not be processed) 

CREDIT CARD ORDERS     
Please note that of all these registration sites, the only ones which can
process CREDIT CARD orders are; 
[a] Compuserve, 
[b] Todd Merriman, and 
[c] Henrik Moerk. 

If you will not be registering on-line on Compuserve, please send all credit
card orders either to Todd Merriman, or Henrik Moerk. 

NOTE: If you want to send your credit card orders to Todd Merriman by
e-mail, please put your details (as per the registration form) in an ASCII
file, and then run the program TOTOOLZ.EXE on the file. This will encrypt
the contents of the file. You can then safely e-mail the (encrypted) output
file to Todd Merriman. This precaution is to protect your credit card details
from internet hackers. 



To register  Chief's  Installer  Pro,  please  PRINT and FILL  IN the
following Registration FORM.     

NOTE:    Please specify  your  CURRENT version  of  Chief's  Installer  
Pro  .   

TO: 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 

I wish to REGISTER my copy of "Chief's Installer Pro". 
My current version is    __________ 

I am ordering                 __________  copies 

I am paying the REGISTRATION FEE of         __________ 

ADD Tax (if applicable)                                       __________ 
(See info on the registration sites to see if they collect tax) 

Total FEE:                                                              ____________ 
I  am  paying  by    Cheque/Money  Order/Credit  Card   (delete  as
inapproriate) 

NAME         
_________________________________________________________________ 
ADDRESS
_________________________________________________________________ 

_________________________________________________________________ 

_________________________________________________________________ 

POST/ZIP CODE __________________________________________________ 
E-MAIL
_________________________________________________________________ 

How did you get your copy of Chief's Installer Pro? 
_________________________________________________________________ 

IF PAYING BY CREDIT CARD, PLEASE SEND THE FOLLOWING DETAILS; 
(NOTE:  Not  all  sites  accept  credit  cards  so  please  refer  to  the  list  of
REGISTRATION SITES) 

CARD ISSUER           ______________________________________________ 



CARD NUMBER           ______________________________________________ 
DATE OF ISSUE         _______________________________________________ 
EXPIRY DATE           ______________________________________________ 
SIGNATURE             _______________________________________________ 
DATE                  __________________________________________________ 

PLEASE REMEMBER TO SIGN THE CREDIT CARD ORDER! 



TECHNICAL SUPPORT     
1.  Technical support can only be provided for people who HAVE
registered.  Please note therefore that no support can be provided for
anyone who has not registered (not even if  you promise me that  "the
cheque  is  in  the  post"),  and  that  I  can  answer  no  questions  from
anyone who has not registered. This is so that those who have paid can
get the support that they deserve and have paid for. 

2. Please note also that NONE of my registration sites can provide
technical  support.  Therefore,  customers  are  asked  to  please  not
telephone  or  fax  any  request  for  technical  support  to  any  of  my
registration sites.  Rather,   all requests for  technical  support should be
sent to  Dr A Olowofoyeku (address below). The preferred medium of
communication is electronic mail. 

3.  Please  read  the  CHIEF.FAQ  file  before  sending  requests  for
technical support. The file might very well contain the answer to your
query. 

4. Please send requests for technical support by e-mail to: 
[a] laa12@keele.ac.uk 
OR, 
[b] chief@mep.com 

If you do not have e-mail facilities, then please send queries by post to: 
Dr A A Olowofoyeku 
268 Horwood 
Newcastle 
STAFFS,   ST5 5BQ 
ENGLAND. 


